Unusual roles of caspase-8 in triple-negative breast cancer cell line MDA-MB-231

被引:23
|
作者
De Blasio, Anna [1 ]
Di Fiore, Riccardo [1 ]
Morreale, Marco [1 ]
Carlisi, Daniela [2 ]
Drago-Ferrante, Rosa [1 ]
Montalbano, Mauro [2 ]
Scerri, Christian [3 ]
Tesoriere, Giovanni [4 ]
Vento, Renza [1 ,4 ]
机构
[1] Univ Palermo, Dept Biol Chem & Pharmaceut Sci & Technol, Lab Biochem, I-90127 Palermo, Italy
[2] Univ Palermo, Dept Expt Biomed & Clin Neurosci, Lab Biochem, I-90127 Palermo, Italy
[3] Univ Malta, Dept Physiol & Biochem, Msida, Malta
[4] Temple Univ, Ctr Biotechnol, Sbarro Inst Canc Res & Mol, Philadelphia, PA 19122 USA
关键词
caspase-8 unusual roles; triple-negative breast cancer cells; MDA-MB-231; cells; cell cycle regulators; caspase-8; knockdown; KLF4; invasivity and metastasis; METASTASIS; EXPRESSION; GENE; MDA-MB231; PARTHENOLIDE; MUTATIONS; PHENOTYPE; RECEPTOR; PROTEIN; GROWTH;
D O I
10.3892/ijo.2016.3474
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Triple-negative breast cancer (TNBC) is a clinically aggressive form of breast cancer that is unresponsive to endocrine agents or trastuzumab. TNBC accounts for similar to 10-20% of all breast cancer cases and represents the form with the poorest prognosis. Patients with TNBC are at higher risk of early recurrence, mainly in the lungs, brain and soft tissue, therefore, there is an urgent need for new therapies. The present study was carried out in MDA-MB-231 cells, where we assessed the role of caspase-8 (casp-8), a critical effector of death receptors, also involved in non-apoptotic functions. Analysis of casp-8 mRNA and protein levels indicated that they were up-regulated with respect to the normal human mammalian epithelial cells. We demonstrated that silencing of casp-8 by small interfering-RNA, strongly decreased MDA-MB-231 cell growth by delaying G0/G1- to S-phase transition and increasing p21, p27 and hypo-phosphorylated/active form of pRb levels. Surprisingly, casp-8-knockdown, also potently increased both the migratory and metastatic capacity of MDA-MB-231 cells, as shown by both wound healing and Matrigel assay, and by the expression of a number of related-genes and/or proteins such as VEGFA, C-MYC, CTNNB1, HMGA2, CXCR4, KLF4, VERSICAN V1 and MMP2. Among these, KLF4, a transcriptional factor with a dual role (activator and repressor), seemed to play critical roles. We suggest that in MDA-MB-231 cells, the endogenous expression of casp-8 might keep the cells perpetually cycling through downregulation of KLF4, the subsequent lowering of p21 and p27, and the inactivation by hyperphosphorylation of pRb. Simultaneously, by lowering the expression of some migratory and invasive genes, casp-8 might restrain the metastatic ability of the cells. Overall, our findings showed that, in MDA-MB-231 cells, casp-8 might play some unusual roles which should be better explored, in order to understand whether it might be identified as a molecular therapeutic target.
引用
收藏
页码:2339 / 2348
页数:10
相关论文
共 50 条
  • [1] Brucine Suppresses Vasculogenic Mimicry in Human Triple-Negative Breast Cancer Cell Line MDA-MB-231
    Xu, Meng-Ran
    Wei, Peng-Fei
    Suo, Ming-Zhu
    Hu, Yi
    Ding, Weiping
    Su, Li
    Zhu, Yao-Dong
    Song, Wan-Ji
    Tang, Guan-Hao
    Zhang, Mei
    Li, Ping
    BIOMED RESEARCH INTERNATIONAL, 2019, 2019
  • [2] Establishment of a bioluminescent MDA-MB-231 cell line for human triple-negative breast cancer research
    Wang, Ke
    Xie, Simei
    Ren, Yu
    Xia, Haibin
    Zhang, Xinwei
    He, Jianjun
    ONCOLOGY REPORTS, 2012, 27 (06) : 1981 - 1989
  • [3] Characterization of Triple-Negative Breast Cancer MDA-MB-231 Cell Spheroid Model
    Huang, Zhaoming
    Yu, Panpan
    Tang, Jianhui
    ONCOTARGETS AND THERAPY, 2020, 13 : 5395 - 5405
  • [4] Synergistic enhancement of apoptosis by coralyne and paclitaxel in combination on MDA-MB-231 a triple-negative breast cancer cell line
    Kumari, Seema
    Mohan, Murali G.
    Shailender, G.
    Badana, Anil Kumar
    Malla, Rama Rao
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2019, 120 (10) : 18104 - 18116
  • [5] MELK as a potential target to control cell proliferation in triple-negative breast cancer MDA-MB-231 cells
    Li, Gang
    Yang, Mei
    Zuo, Li
    Wang, Mei-Xing
    ONCOLOGY LETTERS, 2018, 15 (06) : 9934 - 9940
  • [6] Ampelopsin E Reduces the Invasiveness of the Triple Negative Breast Cancer Cell Line, MDA-MB-231
    Tieng, Francis Yew Fu
    Latifah, Saiful Yazan
    Hashim, Nur Fariesha Md
    Khaza'ai, Huzwah
    Ahmat, Norizan
    Gopalsamy, Banulata
    Wibowo, Agustono
    MOLECULES, 2019, 24 (14):
  • [7] The Triple-negative Breast Cancer Cell Line MDA-MB 231 Is Specifically Inhibited by the Ionophore Salinomycin
    Hero, Thomas
    Buehler, Helmut
    Kouam, Pascaline Nguemgo
    Priesch-Grzeszowiak, Bettina
    Lateit, Tatiana
    Adamietz, Irenaus Anton
    ANTICANCER RESEARCH, 2019, 39 (06) : 2821 - 2827
  • [8] Pereskia bleo augments NK cell cytotoxicity against triple-negative breast cancer cells (MDA-MB-231)
    Khalaf, Taif Kareem
    Ismail, Norzila
    Nazri, Nor Amalia
    Ahmed, Naveed
    Yajid, Aidy Irman
    Mohamud, Rohimah
    Kadir, Ramlah
    PEERJ, 2024, 12
  • [9] Cell cycle arrest-mediated cell death by morin in MDA-MB-231 triple-negative breast cancer cells
    Maharjan, Sushma
    Kwon, Yun-Suk
    Lee, Min-Gu
    Lee, Kyu-Shik
    Nam, Kyung-Soo
    PHARMACOLOGICAL REPORTS, 2021, 73 (05) : 1315 - 1327
  • [10] BTG2 inhibits the proliferation, invasion, and apoptosis of MDA-MB-231 triple-negative breast cancer cells
    Zhang, Yan-jun
    Wei, Lichun
    Liu, Mei
    Li, Jie
    Zheng, Yi-qiong
    Gao, Ying
    Li, Xi-ru
    TUMOR BIOLOGY, 2013, 34 (03) : 1605 - 1613