A deformation quantization theory for noncommutative quantum mechanics

被引:19
作者
Dias, Nuno Costa [3 ,4 ]
de Gosson, Maurice [1 ]
Luef, Franz [1 ,2 ]
Prata, Joao Nuno [3 ,4 ]
机构
[1] Univ Vienna, NuHAG Fak Math, A-1090 Vienna, Austria
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[3] Univ Lusofona Humanidades & Tecnol, Dept Matemat, P-1749024 Lisbon, Portugal
[4] Univ Lisbon, Grp Fis Matemat, P-1649003 Lisbon, Portugal
关键词
EQUATION; PLANE;
D O I
10.1063/1.3436581
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the deformation quantization of noncommutative quantum mechanics previously considered by Dias and Prata ["Weyl-Wigner formulation of noncommutative quantum mechanics," J. Math. Phys. 49, 072101 (2008)] and Bastos, Dias, and Prata ["Wigner measures in non-commutative quantum mechanics," e-print arXiv:math-ph/0907.4438v1; Commun. Math. Phys. (to appear)] can be expressed as a Weyl calculus on a double phase space. We study the properties of the star-product thus defined and prove a spectral theorem for the star-genvalue equation using an extension of the methods recently initiated by de Gosson and Luef ["A new approach to the star-genvalue equation," Lett. Math. Phys. 85, 173-183 (2008)]. (C) 2010 American Institute of Physics. [doi:10.1063/1.3436581]
引用
收藏
页数:12
相关论文
共 46 条
  • [1] Berry phase in the gravitational quantum well and the Seiberg-Witten map
    Bastos, C.
    Bertolami, O.
    [J]. PHYSICS LETTERS A, 2008, 372 (34) : 5556 - 5559
  • [2] BASTOS C, ARXIVHEPTH09124027V1
  • [3] BASTOS C, COMMUN MATH IN PRESS
  • [4] Weyl-Wigner formulation of noncommutative quantum mechanics
    Bastos, Catarina
    Bertolami, Orfeu
    Dias, Nuno Costa
    Prata, Joao Nuno
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (07)
  • [5] Black holes and phase-space noncommutativity
    Bastos, Catarina
    Bertolami, Orfeu
    Dias, Nuno Costa
    Prata, Joao Nuno
    [J]. PHYSICAL REVIEW D, 2009, 80 (12):
  • [6] Phase-space noncommutative quantum cosmology
    Bastos, Catarina
    Bertolami, Orfeu
    Dias, Nuno Costa
    Pratax, Joao Nuno
    [J]. PHYSICAL REVIEW D, 2008, 78 (02):
  • [7] DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES
    BAYEN, F
    FLATO, M
    FRONSDAL, C
    LICHNEROWICZ, A
    STERNHEIMER, D
    [J]. ANNALS OF PHYSICS, 1978, 111 (01) : 61 - 110
  • [8] DEFORMATION THEORY AND QUANTIZATION .2. PHYSICAL APPLICATIONS
    BAYEN, F
    FLATO, M
    FRONSDAL, C
    LICHNEROWICZ, A
    STERNHEIMER, D
    [J]. ANNALS OF PHYSICS, 1978, 111 (01) : 111 - 151
  • [9] Noncommutative gravitational quantum well -: art. no. 025010
    Bertolami, O
    Rosa, JG
    de Aragao, CML
    Castorina, P
    Zappalà, D
    [J]. PHYSICAL REVIEW D, 2005, 72 (02): : 1 - 9
  • [10] Field-theoretic Weyl quantization as a strict and continuous deformation quantization
    Binz, E
    Honegger, R
    Rieckers, A
    [J]. ANNALES HENRI POINCARE, 2004, 5 (02): : 327 - 346