ESSENTIAL AMENABILITY OF DUAL BANACH ALGEBRAS

被引:1
作者
Ziamanesh, Mohsen [1 ]
Shojaee, Behrouz [2 ]
Mahmoodi, Amin [3 ]
机构
[1] Islamic Azad Univ, South Tehran Branch, Dept Math, Tehran, Iran
[2] Islamic Azad Univ, Karaj Branch, Dept Math, Karaj, Iran
[3] Islamic Azad Univ, Cent Tehran Branch, Dept Math, Tehran, Iran
关键词
Banach algebra; dual Banach algebra; essential amenability; essential Connes-amenability; CONNES-AMENABILITY; VIRTUAL DIAGONALS;
D O I
10.1017/S0004972719000510
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that an essentially amenable Banach algebra need not have an approximate identity. This answers a question posed by Ghahramani and Loy ['Generalized notions of amenability', J. Funct. Anal. 208 (2004), 229-260]. Essentially Connes-amenable dual Banach algebras are introduced and studied.
引用
收藏
页码:479 / 488
页数:10
相关论文
共 12 条
[1]   Banach Algebras on Semigroups and on Their Compactifications [J].
Dales, H. G. ;
Lau, A. T. -M. ;
Strauss, D. .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 205 (966) :1-+
[2]   Generalized notions of amenability [J].
Ghahramani, F ;
Loy, RJ .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 208 (01) :229-260
[3]  
JOHNSON BE, 1972, MEM AM MATH SOC, P1
[4]   On φ-amenability of Banach algebras [J].
Kaniuth, Eberhard ;
Lau, Anthony T. ;
Pym, John .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2008, 144 :85-96
[5]  
Mahmoodi A., 2014, J LINEAR TOPOL ALGEB, V3, P211
[6]  
Mahmoodi A, 2016, U POLITEH BUCH SER A, V78, P157
[7]   On certain products of Banach algebras with applications to harmonic analysis [J].
Monfared, Mehdi Sangani .
STUDIA MATHEMATICA, 2007, 178 (03) :277-294
[8]   Dual banach algebras: Connes-amenability, normal, virtual diagonals, and injectivity of the predual bimodule [J].
Runde, V .
MATHEMATICA SCANDINAVICA, 2004, 95 (01) :124-144
[9]   Amenability for dual Banach algebras [J].
Runde, V .
STUDIA MATHEMATICA, 2001, 148 (01) :47-66
[10]   Connes-amenability and normal, virtual diagonals for measure algebras I [J].
Runde, V .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 67 :643-656