A near-optimal solution to a two-dimensional cutting stock problem

被引:139
作者
Kenyon, C
Rémila, E
机构
[1] Univ Paris Sud, LRI, F-91405 Orsay, France
[2] Univ St Etienne, IUT Roanne, Grima, F-42334 Roanne, France
[3] Ecole Normale Super Lyon, CNRS, Umr 5668, F-69364 Lyon, France
关键词
cutting-stock; strip-packing; fully polynomial approximation scheme;
D O I
10.1287/moor.25.4.645.12118
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present an asymptotic fully polynomial approximation scheme for strip-packing, or packing rectangles into a rectangle of fixed width and minimum height, a classical NP-hard cutting-stock problem. The algorithm, based on a new linear-programming relaxation, finds a packing of n rectangles whose total height is within a factor of(1 + epsilon) of optimal (up to an additive term), and has running time polynomial both in n and in 1/epsilon.
引用
收藏
页码:645 / 656
页数:12
相关论文
共 18 条
[1]   ORTHOGONAL PACKINGS IN 2 DIMENSIONS [J].
BAKER, BS ;
COFFMAN, EG ;
RIVEST, RL .
SIAM JOURNAL ON COMPUTING, 1980, 9 (04) :846-855
[2]   A 5-4 ALGORITHM FOR TWO-DIMENSIONAL PACKING [J].
BAKER, BS ;
BROWN, DJ ;
KATSEFF, HP .
JOURNAL OF ALGORITHMS, 1981, 2 (04) :348-368
[3]  
Coffman E.G., 1984, Algorithm Design for Computer System Design, P49
[4]  
COFFMAN EG, 1980, SIAM J COMPUT, V9, P808, DOI 10.1137/0209062
[5]  
DELAVEGA WF, 1981, COMBINATORICA, V1, P349
[6]  
DELAVEGA WF, 1991, APPROXIMATION SCHEME
[7]  
ELMOUMNI S, 1997, ANN FS TOULOSE MATH, V6, P121
[8]   PACKING SQUARES WITH EQUAL SQUARES [J].
ERDOS, P ;
GRAHAM, RL .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1975, 19 (01) :119-123
[9]   MULTISTAGE CUTTING STOCK PROBLEMS OF 2 AND MORE DIMENSIONS [J].
GILMORE, PC ;
GOMORY, RE .
OPERATIONS RESEARCH, 1965, 13 (01) :94-&