Transferring knowledge from monocular completion for self-supervised monocular depth estimation

被引:3
作者
Sun, Lin [1 ]
Li, Yi [1 ]
Liu, Bingzheng [1 ]
Xu, Liying [1 ]
Zhang, Zhe [1 ]
Zhu, Jie [1 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
关键词
Monocular depth estimation; Self-supervised learning; Knowledge transfer; Monocular depth completion;
D O I
10.1007/s11042-021-11212-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Monocular depth estimation is a very challenging task in computer vision, with the goal to predict per-pixel depth from a single RGB image. Supervised learning methods require large amounts of depth measurement data, which are time-consuming and expensive to obtain. Self-supervised methods are showing great promise, exploiting geometry to provide supervision signals through image warping. Moreover, several works leverage on other visual tasks (e.g. stereo matching and semantic segmentation) to further advance self-supervised monocular depth estimation. In this paper, we propose a novel framework utilizing monocular depth completion as an auxiliary task to assist monocular depth estimation. In particular, a knowledge transfer strategy is employed to enable monocular depth estimation to benefit from the effective feature representations learned by monocular depth completion task. The correlation between monocular depth completion and monocular depth estimation could be fully and effectively utilized in this framework. Only unlabeled stereo images are used in the proposed framework, which achieves a self-supervised learning paradigm. Experimental results on publicly available dataset prove that the proposed approach achieves superior performance to state-of-the-art self-supervised methods and comparable performance with supervised methods.
引用
收藏
页码:42485 / 42495
页数:11
相关论文
共 49 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]  
ATAPOURABARGHOU.A, 2018, PROC CVPR IEEE, P2800, DOI DOI 10.1109/CVPR.2018.00296
[3]   Estimating Depth From Monocular Images as Classification Using Deep Fully Convolutional Residual Networks [J].
Cao, Yuanzhouhan ;
Wu, Zifeng ;
Shen, Chunhua .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2018, 28 (11) :3174-3182
[4]   Towards Scene Understanding: Unsupervised Monocular Depth Estimation with Semantic-aware Representation [J].
Chen, Po-Yi ;
Liu, Alexander H. ;
Liu, Yen-Cheng ;
Wang, Yu-Chiang Frank .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :2619-2627
[5]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[6]  
Eigen D, 2014, ADV NEUR IN, V27
[7]   Deep Ordinal Regression Network for Monocular Depth Estimation [J].
Fu, Huan ;
Gong, Mingming ;
Wang, Chaohui ;
Batmanghelich, Kayhan ;
Tao, Dacheng .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :2002-2011
[8]   Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue [J].
Garg, Ravi ;
VijayKumar, B. G. ;
Carneiro, Gustavo ;
Reid, Ian .
COMPUTER VISION - ECCV 2016, PT VIII, 2016, 9912 :740-756
[9]  
Geiger A., 2012, C COMP VIS PATT REC
[10]   Digging Into Self-Supervised Monocular Depth Estimation [J].
Godard, Clement ;
Mac Aodha, Oisin ;
Firman, Michael ;
Brostow, Gabriel .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :3827-3837