Are Nanoporous Materials Radiation Resistant?

被引:216
作者
Bringa, E. M. [2 ,3 ]
Monk, J. D. [4 ]
Caro, A. [1 ]
Misra, A. [1 ]
Zepeda-Ruiz, L. [5 ]
Duchaineau, M. [5 ]
Abraham, F. [5 ]
Nastasi, M. [1 ]
Picraux, S. T. [1 ]
Wang, Y. Q. [1 ]
Farkas, D. [6 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM USA
[2] Univ Nacl Cuyo, CONICET, RA-5500 Mendoza, Argentina
[3] Univ Nacl Cuyo, Inst Ciencias Basicas, RA-5500 Mendoza, Argentina
[4] Louisiana State Univ, Cain Dept Chem Engn, Baton Rouge, LA 70803 USA
[5] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[6] Virginia Tech, Dept Mat Sci, Blacksburg, VA 24061 USA
关键词
Radiation damage; nanofoams; gold; computer simulations; CASCADES; METALS; DAMAGE; NI;
D O I
10.1021/nl201383u
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The key to perfect radiation endurance is perfect recovery. Since surfaces are perfect sinks for defects, a porous material with a high surface to volume ratio has the potential to be extremely radiation tolerant, provided it is morphologically stable in a radiation environment. Experiments and computer simulations on nanoscale gold foams reported here show the existence of a window in the parameter space where foams are radiation tolerant. We analyze these results in terms of a model for the irradiation response that quantitatively locates such window that appears to be the consequence of the combined effect of two length scales dependent on the irradiation conditions: (i) foams with ligament diameters below a minimum value display ligament melting and breaking, together with compaction increasing with dose (this value is typically similar to 5 nm for primary knock on atoms (PKA) of similar to 15 keV in Au), while (ii) foams with ligament diameters above a maximum value show bulk behavior, that is, damage accumulation (few hundred nanometers for the PKA's energy and dose rate used in this study). In between these dimensions, (i.e., similar to 100 nm in Au), defect migration to the ligament surface happens faster than the time between cascades, ensuring radiation resistance for a given dose-rate. We conclude that foams can be tailored to become radiation tolerant.
引用
收藏
页码:3351 / 3355
页数:5
相关论文
共 21 条
  • [1] RADIATION-DAMAGE CASCADES - LIQUID DROPLET TREATMENT OF SUBCASCADE INTERACTIONS
    ALURRALDE, M
    CARO, A
    VICTORIA, M
    [J]. JOURNAL OF NUCLEAR MATERIALS, 1991, 183 (1-2) : 33 - 45
  • [2] Controlled nanoporous Pt morphologies by varying deposition parameters
    Antoniou, Antonia
    Bhattacharrya, Dhriti
    Baldwin, J. Kevin
    Goodwin, Peter
    Nastasi, Michael
    Picraux, S. T.
    Misra, Amit
    [J]. APPLIED PHYSICS LETTERS, 2009, 95 (07)
  • [3] Efficient Annealing of Radiation Damage Near Grain Boundaries via Interstitial Emission
    Bai, Xian-Ming
    Voter, Arthur F.
    Hoagland, Richard G.
    Nastasi, Michael
    Uberuaga, Blas P.
    [J]. SCIENCE, 2010, 327 (5973) : 1631 - 1634
  • [4] Size effects on the mechanical behavior of nanoporous Au
    Biener, Juergen
    Hodge, Andrea M.
    Hayes, Joel R.
    Volkert, Cynthia A.
    Zepeda-Ruiz, Luis A.
    Hamza, Alex V.
    Abraham, Farid F.
    [J]. NANO LETTERS, 2006, 6 (10) : 2379 - 2382
  • [5] Cratering-energy regimes: From linear collision cascades to heat spikes to macroscopic impacts
    Bringa, EM
    Nordlund, K
    Keinonen, J
    [J]. PHYSICAL REVIEW B, 2001, 64 (23)
  • [6] Geometric relaxation of nanoporous metals: The role of surface relaxation
    Crowson, Douglas A.
    Farkas, Diana
    Corcoran, Sean G.
    [J]. SCRIPTA MATERIALIA, 2007, 56 (11) : 919 - 922
  • [7] Mechanical stability of nanoporous metals with small ligament sizes
    Crowson, Douglas A.
    Farkas, Diana
    Corcoran, Sean G.
    [J]. SCRIPTA MATERIALIA, 2009, 61 (05) : 497 - 499
  • [8] Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites
    Demkowicz, M. J.
    Hoagland, R. G.
    Hirth, J. P.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (13)
  • [9] Atomistic mechanism of shock-induced void collapse in nanoporous metals
    Erhart, P
    Bringa, EM
    Kumar, M
    Albe, K
    [J]. PHYSICAL REVIEW B, 2005, 72 (05)
  • [10] FOILES SM, 1986, PHYS REV B, V33, P7983, DOI 10.1103/PhysRevB.33.7983