PURE ENDMEMBER EXTRACTION USING SSR FOR HYPERSPECTRAL IMAGERY

被引:0
作者
Sun, Weiwei [1 ,2 ]
Jiang, Man [1 ]
Zhang, Liangpei [2 ]
机构
[1] Ningbo Univ, Fac Architectural Engn Civil Engn & Environm, Ningbo 315211, Zhejiang, Peoples R China
[2] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
来源
2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2016年
关键词
Endmember extraction; symmetric sparse representation; hyperspectral imagery; spectral unmixing;
D O I
10.1109/IGARSS.2016.7730721
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This manuscript proposes a symmetric sparse representation (SSR) method to extract pure endmembers from Hyperspectral imagery (HSI). The SSR assumes that the desired endmembers and all the HSI pixels can be sparsely represented by each other and it formulates the endmember extraction problem into finding archetypes in the minimal convex hull of the HSI data. The optimization program of SSR is solved by a simple projected gradient algorithm and the endmembers are initialized with the vector quantization scheme. Preliminary results on the popular Urban HSI data infer that the SSR performs better than several state-of-the-art methods (VCA, NFINDER, AVMAX, SVMAX, XRAY, OSP and H2NMF).
引用
收藏
页码:6589 / 6592
页数:4
相关论文
共 50 条
[41]   On Endmember Identification in Hyperspectral Images Without Pure Pixels: A Comparison of Algorithms [J].
Javier Plaza ;
Eligius M. T. Hendrix ;
Inmaculada García ;
Gabriel Martín ;
Antonio Plaza .
Journal of Mathematical Imaging and Vision, 2012, 42 :163-175
[42]   A CBIR System for Hyperspectral Remote Sensing Images Using Endmember Extraction [J].
Zhang, Jing ;
Zhou, Qianlan ;
Zhuo, Li ;
Geng, Wenhao ;
Wang, Suyu .
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2017, 31 (04)
[43]   Endmember extraction algorithms from hyperspectral images [J].
Martinez, Pablo J. ;
Perez, Rosa M. ;
Plaza, Antonio ;
Aguilar, Pedro L. ;
Cantero, Maria C. ;
Plaza, Javier .
ANNALS OF GEOPHYSICS, 2006, 49 (01) :93-101
[44]   Improving Automatic Target Generation Process for Hyperspectral Endmember Extraction [J].
Wu, Jee-Cheng ;
Tsuei, Gwo-Chyang ;
Feng, Cheng-Fu .
2015 23RD INTERNATIONAL CONFERENCE ON GEOINFORMATICS, 2015,
[45]   Using a column subset selection method for endmember extraction in hyperspectral unmixing [J].
Velez-Reyes, Miguel ;
Aldeghlawi, Maher .
ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XXIV, 2018, 10644
[46]   Multiobjective Optimized Endmember Extraction for Hyperspectral Image [J].
Liu, Rong ;
Du, Bo ;
Zhang, Liangpei .
REMOTE SENSING, 2017, 9 (06)
[47]   A Poisson nonnegative matrix factorization method with parameter subspace clustering constraint for endmember extraction in hyperspectral imagery [J].
Sun, Weiwei ;
Ma, Jun ;
Yang, Gang ;
Du, Bo ;
Zhang, Liangpei .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2017, 128 :27-39
[48]   A Novel Endmember Extraction Method for Hyperspectral Imagery Based on Quantum-Behaved Particle Swarm Optimization [J].
Liu, Rong ;
Zhang, Liangpei ;
Du, Bo .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (04) :1610-1631
[49]   Endmember Variability Resolved by Pixel Purity Index in Hyperspectral Imagery [J].
Li, Yao ;
Gao, Cheng ;
Chen, Shih-Yu ;
Chang, Chein-I .
SATELLITE DATA COMPRESSION, COMMUNICATIONS, AND PROCESSING X, 2014, 9124
[50]   Sparsity promoting iterated constrained endmember detection in hyperspectral imagery [J].
Zare, Alina ;
Gader, Paul .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2007, 4 (03) :446-450