Increasing attraction of pseudo-inverse autoassociative networks

被引:0
作者
Gorodnichy, DO [1 ]
Reznik, AM [1 ]
机构
[1] UNIV ALBERTA,DEPT COMP SCI,EDMONTON,AB T6G 2H1,CANADA
关键词
attraction radius; pseudo-inverse learning rule; self-connections;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We show howl partial reduction of self-connections of the network designed with the pseudo-inverse learning rule increases the direct attraction radius of the network. Theoretical formula is obtained. Data obtained by simulation are presented.
引用
收藏
页码:121 / 125
页数:5
相关论文
共 6 条
[1]   ATTRACTION RADII IN BINARY HOPFIELD NETS ARE HARD TO COMPUTE [J].
FLOREEN, P ;
ORPONEN, P .
NEURAL COMPUTATION, 1993, 5 (05) :812-821
[2]  
GORODNICHY DO, 1996, HELNET 94 95 INT WOR, V1, P198
[3]  
Hertz J., 1991, Introduction to the Theory of Neural Computation
[4]   ASSOCIATIVE RECALL OF MEMORY WITHOUT ERRORS [J].
KANTER, I ;
SOMPOLINSKY, H .
PHYSICAL REVIEW A, 1987, 35 (01) :380-392
[5]  
Kohonen T., 1984, SELF ORG ASS MEMORY
[6]   COLLECTIVE COMPUTATIONAL PROPERTIES OF NEURAL NETWORKS - NEW LEARNING-MECHANISMS [J].
PERSONNAZ, L ;
GUYON, I ;
DREYFUS, G .
PHYSICAL REVIEW A, 1986, 34 (05) :4217-4228