Creating defects on graphene basal-plane toward interface optimization of graphene/CuCr composites

被引:99
作者
Chu, Ke [1 ]
Wang, Jing [1 ]
Liu, Ya-ping [1 ]
Li, Yuan-bo [1 ]
Jia, Cheng-chang [2 ]
Zhang, Hu [2 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Mat Sci & Engn, Lanzhou 730070, Gansu, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
ENHANCED MECHANICAL-PROPERTIES; METAL-MATRIX COMPOSITES; CARBON NANOTUBES; THERMAL-PROPERTIES; STRENGTHENING BEHAVIOR; TENSILE PROPERTIES; PLASMA TREATMENT; LOAD-TRANSFER;
D O I
10.1016/j.carbon.2018.10.095
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In-situ formation of appropriate interfacial carbides by matrix-alloying with carbide-forming elements offers an efficient approach to improve the interfacial bonding of graphene/CuX composites. However, the carbide formation commonly occurs at graphene edge/matrix interface, which is not enough to achieve the sufficient interfacial bonding because the vast majority of graphene/matrix interface is basal-plane/matrix interface rather than edge/matrix interface. To alleviate this limitation, we reported a new design of creating defects on graphene basal-plane (CDGB) to optimize the interface and mechanical properties of graphene/CuCr composites. Plasma treatment was employed to create the structural defects (similar to 7 nm nanopores) on graphene basal-plane. When incorporating the plasma-treated graphene into the CuCr matrix, the Cr7C3 carbides were found to be in-situ formed at both basal-plane/matrix and edge/matrix interfaces. Ex-situ and in-situ tensile tests both demonstrated that the plasma-treated graphene led to the composite that showed a larger strength enhancement and a higher load transfer capability than untreated counterpart, which was ascribed to the largely improved interfacial bonding contributed by the Cr7C3 formed at basal-plane/matrix interface. This study suggests that the CDBG via plasma treatment affords a feasible solution for the interface optimization of graphene/CuX composites with enhanced mechanical properties. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:85 / 96
页数:12
相关论文
共 53 条
[1]   Growth of large-area graphene films from metal-carbon melts [J].
Amini, Shaahin ;
Garay, Javier ;
Liu, Guanxiong ;
Balandin, Alexander A. ;
Abbaschian, Reza .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (09)
[2]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[3]   Aligning graphene in bulk copper: Nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity [J].
Cao, Mu ;
Xiong, Ding-Bang ;
Tan, Zhanqiu ;
Ji, Gang ;
Amin-Ahmadi, Behnam ;
Guo, Qiang ;
Fan, Genlian ;
Guo, Cuiping ;
Li, Zhiqiang ;
Zhang, Di .
CARBON, 2017, 117 :65-74
[4]   Load transfer strengthening in carbon nanotubes reinforced metal matrix composites via in-situ tensile tests [J].
Chen, Biao ;
Li, Shufeng ;
Imai, Hisashi ;
Jia, Lei ;
Umeda, Junko ;
Takahashi, Makoto ;
Kondoh, Katsuyoshi .
COMPOSITES SCIENCE AND TECHNOLOGY, 2015, 113 :1-8
[5]   Tensile properties of in situ consolidated nanocrystalline Cu [J].
Cheng, S ;
Ma, E ;
Wang, YM ;
Kecskes, LJ ;
Youssef, KM ;
Koch, CC ;
Trociewitz, UP ;
Han, K .
ACTA MATERIALIA, 2005, 53 (05) :1521-1533
[6]   Graphene defect engineering for optimizing the interface and mechanical properties of graphene/copper composites [J].
Chu, Ke ;
Wang, Jing ;
Liu, Ya-ping ;
Geng, Zhong-rong .
CARBON, 2018, 140 :112-123
[7]   Oxygen plasma treatment for improving graphene distribution and mechanical properties of graphene/copper composites [J].
Chu, Ke ;
Liu, Ya-ping ;
Wang, Jing ;
Geng, Zhong-rong ;
Li, Yuan-bo .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 735 :398-407
[8]   Interface and mechanical/thermal properties of graphene/copper composite with Mo2C nanoparticles grown on graphene [J].
Chu, Ke ;
Wang, Fan ;
Li, Yu-biao ;
Wang, Xiao-hu ;
Huang, Da-jian ;
Geng, Zhong-rong .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2018, 109 :267-279
[9]   Interface structure and strengthening behavior of graphene/CuCr composites [J].
Chu, Ke ;
Wang, Fan ;
Li, Yu-biao ;
Wang, Xiao-hu ;
Huang, Da-jian ;
Zhang, Hu .
CARBON, 2018, 133 :127-139
[10]   Interface design of graphene/copper composites by matrix alloying with titanium [J].
Chu, Ke ;
Wang, Fan ;
Wang, Xiao-hu ;
Li, Yu-biao ;
Geng, Zhong-rong ;
Huang, Da-jian ;
Zhang, Hu .
MATERIALS & DESIGN, 2018, 144 :290-303