Steady-state Levy flights in a confined domain

被引:43
作者
Denisov, S. I. [1 ,2 ,3 ]
Horsthemke, Werner [4 ]
Haenggi, Peter [1 ]
机构
[1] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany
[2] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[3] Sumy State Univ, UA-40007 Sumy, Ukraine
[4] So Methodist Univ, Dept Chem, Dallas, TX 75275 USA
来源
PHYSICAL REVIEW E | 2008年 / 77卷 / 06期
关键词
D O I
10.1103/PhysRevE.77.061112
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We derive the generalized Fokker-Planck equation associated with a Langevin equation driven by arbitrary additive white noise. We apply our result to study the distribution of symmetric and asymmetric Levy flights in an infinitely deep potential well. The fractional Fokker-Planck equation for Levy flights is derived and solved analytically in the steady state. It is shown that Levy flights are distributed according to the beta distribution, whose probability density becomes singular at the boundaries of the well. The origin of the preferred concentration of flying objects near the boundaries in nonequilibrium systems is clarified.
引用
收藏
页数:4
相关论文
共 38 条
  • [1] [Anonymous], 2002, LEVY STAT LASER COOL
  • [2] Intraspecific variation in movement patterns: modeling individual behaviour in a large marine predator
    Austin, D
    Bowen, WD
    McMillan, JI
    [J]. OIKOS, 2004, 105 (01) : 15 - 30
  • [3] Fractional reproduction-dispersal equations and heavy tail dispersal kernels
    Baeumer, Boris
    Kovacs, Mihaly
    Meerschaert, Mark M.
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2007, 69 (07) : 2281 - 2297
  • [4] Bateman H., 1953, HIGHER TRANSCENDENTA, V1
  • [5] Fractional dispersion, Levy motion, and the MADE tracer tests
    Benson, DA
    Schumer, R
    Meerschaert, MM
    Wheatcraft, SW
    [J]. TRANSPORT IN POROUS MEDIA, 2001, 42 (1-2) : 211 - 240
  • [6] Physical pictures of transport in heterogeneous media: Advection-dispersion, random-walk, and fractional derivative formulations
    Berkowitz, B
    Klafter, J
    Metzler, R
    Scher, H
    [J]. WATER RESOURCES RESEARCH, 2002, 38 (10)
  • [7] ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS
    BOUCHAUD, JP
    GEORGES, A
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5): : 127 - 293
  • [8] Levy flights in external force fields: from models to equations
    Brockmann, D
    Sokolov, IM
    [J]. CHEMICAL PHYSICS, 2002, 284 (1-2) : 409 - 421
  • [9] Chechkin AV, 2006, ADV CHEM PHYS, V133, P439
  • [10] Levy flights in a steep potential well
    Chechkin, AV
    Gonchar, VY
    Klafter, J
    Metzler, R
    Tanatarov, LV
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2004, 115 (5-6) : 1505 - 1535