ON THE HYPERSTABILITY OF THE DRYGAS FUNCTIONAL EQUATION ON A RESTRICTED DOMAIN

被引:5
作者
Senasukh, Jedsada [1 ]
Saejung, Satit [1 ,2 ]
机构
[1] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
[2] Khon Kaen Univ, Res Ctr Environm & Hazardous Subst Management, Khon Kaen 40002, Thailand
关键词
hyperstability; restricted domain; Drygas functional equation; STABILITY;
D O I
10.1017/S0004972719001096
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove hyperstability results for the Drygas functional equation on a restricted domain (a certain subset of a normed space). Our results are more general than the ones proposed by Aiemsomboon and Sintunavarat ['Two new generalised hyperstability results for the Drygas functional equation',Bull. Aust. Math. Soc.95(2017), 269-280] and our proof does not rely on the fixed point theorem of Brzdek as was the case there. A characterisation of the Drygas functional equation in terms of its asymptotic behaviour is given. Several examples are given to illustrate our generalisations. Finally, we point out a misleading statement in the proof of the second result in the paper by Aiemsomboon and Sintunavarat and propose its correction.
引用
收藏
页码:126 / 137
页数:12
相关论文
共 50 条
[21]   Hyperstability of the Cauchy equation on restricted domains [J].
Brzdek, J. .
ACTA MATHEMATICA HUNGARICA, 2013, 141 (1-2) :58-67
[22]   Remarks on hyperstability of the Cauchy functional equation [J].
Brzdek, Janusz .
AEQUATIONES MATHEMATICAE, 2013, 86 (03) :255-267
[23]   Hyperstability of the Cauchy equation on restricted domains [J].
Janusz Brzdȩk .
Acta Mathematica Hungarica, 2013, 141 :58-67
[24]   HYPERSTABILITY OF A GENERALIZED CAUCHY FUNCTIONAL EQUATION [J].
Najati, Abbas ;
Molaee, Daryoush ;
Park, Choonkil .
JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (06) :1049-1054
[25]   On Drygas functional equation on groups [J].
Faiziev, Valerii A. ;
Sahoo, Prasanna K. .
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2007, 7 (F07) :59-69
[26]   DRYGAS FUNCTIONAL INEQUALITY ON RESTRICTED DOMAINS [J].
Najati, A. ;
Tareeghee, M. A. .
ACTA MATHEMATICA HUNGARICA, 2022, 166 (01) :115-123
[27]   On hyperstability of Cauchy functional equation in (2,γ)-Banach spaces [J].
El-Hady, EI-Sayed .
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2021, 23 (04) :354-363
[28]   Hyperstability of general linear functional equation [J].
Bahyrycz, Anna ;
Olko, Jolanta .
AEQUATIONES MATHEMATICAE, 2016, 90 (03) :527-540
[29]   ON HYPERSTABILITY OF THE BIADDITIVE FUNCTIONAL EQUATION [J].
Iz-iddine EL-FASSI ;
Janusz BRZDEK ;
Abdellatif CHAHBI ;
Samir KABBAJ .
Acta Mathematica Scientia, 2017, (06) :1727-1739
[30]   Hyperstability of the Jensen functional equation [J].
Anna Bahyrycz ;
Magdalena Piszczek .
Acta Mathematica Hungarica, 2014, 142 :353-365