Prediction of contact maps using support vector machines

被引:5
|
作者
Zhao, Y [1 ]
Karypis, G [1 ]
机构
[1] Univ Minnesota, Dept Comp Sci, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
contact map prediction; correlated mutation analysis; support vector machines;
D O I
10.1142/S0218213005002429
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Contact map prediction is of great interest for its application in fold recognition and protein 3D structure determination. In this paper we present a contact-map prediction algorithm that employs Support Vector Machines as the machine learning tool and incorporates various features such as sequence profile and their conservations, correlated mutation analysis based on various amino acid physicochemical properties, and secondary structure. In addition, we evaluated the effectiveness of the different features on contact map prediction for different fold classes. On average, our predictor achieved a prediction accuracy of 0.224 with an improvement over a random predictor of a factor 11.7, which is better than reported studies. Our study showed that predicted secondary structure features play an important roles for the proteins containing beta-structures. Models based on secondary structure features and correlated mutation analysis features produce different sets of predictions. Our study also suggests that models learned separately for different protein fold families may achieve better performance than a unified model.
引用
收藏
页码:849 / 865
页数:17
相关论文
共 50 条
  • [1] PAHs urban concentrations maps using support vector machines
    Pelliccioni, Armando
    Cristofari, Andrea
    Lamberti, Mafalda
    Gariazzo, Claudio
    INTERNATIONAL JOURNAL OF ENVIRONMENT AND POLLUTION, 2017, 61 (01) : 1 - 12
  • [2] Cardiovascular disease prediction using support vector machines
    Alty, SR
    Millasseau, SC
    Chowienczyk, PJ
    Jakobsson, A
    Proceedings of the 46th IEEE International Midwest Symposium on Circuits & Systems, Vols 1-3, 2003, : 376 - 379
  • [3] Credit risk prediction using support vector machines
    Trustorff J.-H.
    Konrad P.M.
    Leker J.
    Review of Quantitative Finance and Accounting, 2011, 36 (4) : 565 - 581
  • [4] Soil moisture prediction using support vector machines
    Gill, M. Kashif
    Asefa, Tirusew
    Kemblowski, Mariush W.
    McKee, Mae
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2006, 42 (04): : 1033 - 1046
  • [5] Pressure Ulcers Prediction Using Support Vector Machines
    Chen, Yan-Cheng
    Wang, Pa-Chun
    Su, Chao-Ton
    2008 4TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-31, 2008, : 11685 - +
  • [6] Prediction of arterial hypertension using support vector machines
    Seijas, Cesar
    Caralli, Antonino
    Villasana, Sergio
    Saenz, Laura
    Arteaga, Francisco
    INGENIERIA UC, 2006, 13 (03): : 13 - 18
  • [7] Prediction of repeat visitation using support vector machines
    Department of Logistics Engineering and Management, National Taichung Institute of Technology, No. 129, Sec. 3, Sanmin Rd., Taichung 404, Taiwan
    不详
    WSEAS Trans. Inf. Sci. Appl., 2007, 2 (369-376):
  • [8] Prediction of alternatively spliced exons using Support Vector Machines
    Xia, Jing
    Caragea, Doina
    Brown, Susan J.
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2010, 4 (04) : 411 - 430
  • [9] A New Promoter Prediction Method using Support Vector Machines
    Arslan, Hilal
    2019 27TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2019,
  • [10] Prediction of protein structural classes using support vector machines
    Sun, X. -D.
    Huang, R. -B.
    AMINO ACIDS, 2006, 30 (04) : 469 - 475