Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity

被引:1100
作者
Pan, Lijia [1 ,2 ]
Yu, Guihua [2 ]
Zhai, Dongyuan [1 ]
Lee, Hye Ryoung [3 ]
Zhao, Wenting [4 ]
Liu, Nian [5 ]
Wang, Huiliang [4 ]
Tee, Benjamin C. -K. [3 ]
Shi, Yi [1 ]
Cui, Yi [4 ,6 ]
Bao, Zhenan [2 ]
机构
[1] Nanjing Univ, Sch Elect Sci & Engn, Natl Lab Microstruct Nanjing, Nanjing 210093, Jiangsu, Peoples R China
[2] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[6] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA
基金
中国国家自然科学基金;
关键词
conductive polymer hydrogel; supercapacitors; biosensors; POLYANILINE; SUPERCAPACITOR; CARBON; FABRICATION; NANOWIRES; BIOSENSOR; TRANSPORT; GROWTH; CHARGE;
D O I
10.1073/pnas.1202636109
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Conducting polymer hydrogels represent a unique class of materials that synergizes the advantageous features of hydrogels and organic conductors and have been used in many applications such as bioelectronics and energy storage devices. They are often synthesized by polymerizing conductive polymer monomer within a nonconducting hydrogel matrix, resulting in deterioration of their electrical properties. Here, we report a scalable and versatile synthesis of multifunctional polyaniline (PAni) hydrogel with excellent electronic conductivity and electrochemical properties. With high surface area and three-dimensional porous nanostructures, the PAni hydrogels demonstrated potential as high-performance supercapacitor electrodes with high specific capacitance (similar to 480 F.g(-1)), unprecedented rate capability, and cycling stability (similar to 83% capacitance retention after 10,000 cycles). The PAni hydrogels can also function as the active component of glucose oxidase sensors with fast response time (similar to 0.3 s) and superior sensitivity (similar to 16.7 mu A.mM(-1)). The scalable synthesis and excellent electrode performance of the PAni hydrogel make it an attractive candidate for bioelectronics and future-generation energy storage electrodes.
引用
收藏
页码:9287 / 9292
页数:6
相关论文
共 44 条
[1]  
[Anonymous], 1979, ELECT PROCESSES NONC
[2]   Environmental responses of polythiophene hydrogels [J].
Chen, L ;
Kim, B ;
Nishino, M ;
Gong, JP ;
Osada, Y .
MACROMOLECULES, 2000, 33 (04) :1232-1236
[3]   Hydrogel cell cultures [J].
Cushing, Melinda C. ;
Anseth, Kristi S. .
SCIENCE, 2007, 316 (5828) :1133-1134
[4]   Supramolecular hydrogels of polyaniline-poly(styrene sulfonate) prepared in concentrated solutions [J].
Dai, Tingyang ;
Jia, Yujie .
POLYMER, 2011, 52 (12) :2550-2558
[5]   Recent advances in polyaniline based biosensors [J].
Dhand, Chetna ;
Das, Maumita ;
Datta, Monika ;
Malhotra, B. D. .
BIOSENSORS & BIOELECTRONICS, 2011, 26 (06) :2811-2821
[6]   A conducting polymer nanojunction sensor for glucose detection [J].
Forzani, ES ;
Zhang, HQ ;
Nagahara, LA ;
Amlani, I ;
Tsui, R ;
Tao, NJ .
NANO LETTERS, 2004, 4 (09) :1785-1788
[7]   An amperometric glucose biosensor based on layer-by-layer GOx-SWCNT conjugate/redox polymer multilayer on a screen-printed carbon electrode [J].
Gao, Qiang ;
Guo, Yanyan ;
Zhang, Wenyan ;
Qi, Honglan ;
Zhang, Chengxiao .
SENSORS AND ACTUATORS B-CHEMICAL, 2011, 153 (01) :219-225
[8]   NEAR-NEIGHBOR INTERACTIONS IN PROTONATION OF POLYANILINE [J].
GHOSH, S .
MACROMOLECULES, 1995, 28 (13) :4729-4732
[9]  
Ghosh S, 1999, ADV MATER, V11, P1214, DOI 10.1002/(SICI)1521-4095(199910)11:14<1214::AID-ADMA1214>3.0.CO
[10]  
2-3