Existence and multiplicity of solutions for fractional Choquard equations

被引:49
作者
Ma, Pei [1 ]
Zhang, Jihui [2 ]
机构
[1] Nanjing Forestry Univ, Coll Sci, Nanjing 210037, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R China
关键词
Critical nonlinearity; Ground state solutions; Fractional Choquard equation; Variational method; Lusternik-Schnirelmann category; theory; POSITIVE SOLUTIONS; SCHRODINGER-EQUATION;
D O I
10.1016/j.na.2017.07.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following fractional order Choquard equation (-Delta)(alpha/2) u(x) + (lambda V(x) - beta)u - (|x|(-mu) * |u|(2)(mu)*)|u|(2)(mu)*(-2) u, x is an element of R-n , with the nonlinearity in the critical growth, where alpha is an element of (0, 2), n >= 3, lambda, beta is an element of R+ and 2*(mu) = (2n - mu)/(n - alpha). Using the variational method, we establish the existence and multiplicity of weak solutions. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:100 / 117
页数:18
相关论文
共 14 条
[1]  
[Anonymous], 2001, ANALYSIS-UK
[2]  
Applebaum D., 2004, NOT AM MATH SOC, V51, P1336
[3]   Multiple positive solutions for a nonlinear Schrodinger equation [J].
Bartsch, T ;
Wang, ZQ .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2000, 51 (03) :366-384
[4]   THE EFFECT OF THE DOMAIN TOPOLOGY ON THE NUMBER OF POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC PROBLEMS [J].
BENCI, V ;
CERAMI, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 114 (01) :79-93
[5]  
Bertoin J., 1996, LEVY PROCESSES
[6]   Ground state solutions for non-autonomous fractional Choquard equations [J].
Chen, Yan-Hong ;
Liu, Chungen .
NONLINEARITY, 2016, 29 (06) :1827-1842
[7]   Positive solutions of a Schrodinger equation with critical nonlinearity [J].
Clapp, M ;
Ding, YH .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2004, 55 (04) :592-605
[8]  
D'Avenia P., ARXIV14067517
[9]   Existence results for a doubly nonlocal equation [J].
d’Avenia P. ;
Siciliano G. ;
Squassina M. .
São Paulo Journal of Mathematical Sciences, 2015, 9 (2) :311-324
[10]   Mean field dynamics of boson stars [J].
Elgart, Alexander ;
Schlein, Benjamin .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (04) :500-545