Effect of Covalent Functionalization on Thermal Transport across Graphene-Polymer Interfaces

被引:139
作者
Wang, Y. [1 ]
Zhan, H. F. [2 ]
Xiang, Y. [1 ]
Yang, C. [1 ]
Wang, C. M. [3 ]
Zhang, Y. Y. [1 ]
机构
[1] Univ Western Sydney, Sch Comp Engn & Math, Sydney, NSW 2751, Australia
[2] Queensland Univ Technol, Sch Chem Phys & Mech Engn, Brisbane, Qld 4001, Australia
[3] Natl Univ Singapore, Fac Engn, Engn Sci Programme, Kent Ridge 119260, Singapore
关键词
PHASE-CHANGE; CARBON NANOTUBES; GRAPHITE NANOPLATELET; CONDUCTIVITY; COMPOSITE; RESISTANCE;
D O I
10.1021/acs.jpcc.5b02920
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This Article is concerned with the interfacial thermal resistance for polymer composites reinforced by various covalently functionalized graphene. By using molecular dynamics simulations, the obtained results show that the covalent functionalization in graphene plays a significant role in reducing the graphene-paraffin interfacial thermal resistance. This reduction is dependent on the coverage and type of functional groups. Among the various functional groups, butyl is found to be the most effective one in reducing the interfacial thermal resistance, followed by methyl, phenyl, and formyl. The other functional groups under consideration such as carboxyl, hydroxyl, and amines are found to produce negligible reduction in the interfacial thermal resistance. For multilayer graphene with a layer number up to four, the interfacial thermal resistance is insensitive to the layer number. The effects of the different functional groups and the layer number on the interfacial thermal resistance are also elaborated using the vibrational density of states of the graphene and the paraffin matrix. The present findings provide useful guidelines in the application of functionalized graphene for practical thermal management.
引用
收藏
页码:12731 / 12738
页数:8
相关论文
共 52 条
[1]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[2]   Enhancement of interfacial thermal transport by carbon nanotube-graphene junction [J].
Bao, Hua ;
Shao, Cheng ;
Luo, Shirui ;
Hu, Ming .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (05)
[3]   A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons [J].
Brenner, DW ;
Shenderova, OA ;
Harrison, JA ;
Stuart, SJ ;
Ni, B ;
Sinnott, SB .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (04) :783-802
[4]   Influence of chemisorption on the thermal conductivity of graphene nanoribbons [J].
Chien, Shih-Kai ;
Yang, Yue-Tzu ;
Chen, Cha'o-Kuang .
CARBON, 2012, 50 (02) :421-428
[5]   Role of graphene waviness on the thermal conductivity of graphene composites [J].
Chu, Ke ;
Li, Wen-sheng ;
Dong, Hongfeng .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2013, 111 (01) :221-225
[6]   Modeling of interfacial modification effects on thermal conductivity of carbon nanotube composites [J].
Clancy, Thomas C. ;
Gates, Thomas S. .
POLYMER, 2006, 47 (16) :5990-5996
[7]   Heat transfer during phase change of paraffin wax stored on spherical shells [J].
Ettouney, H ;
El-Dessouky, H ;
Al-Ali, A .
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2005, 127 (03) :357-365
[8]   Single-layer graphene nanosheets with controlled grafting of polymer chains [J].
Fang, Ming ;
Wang, Kaigang ;
Lu, Hongbin ;
Yang, Yuliang ;
Nutt, Steven .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (10) :1982-1992
[9]   Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites [J].
Ganguli, Sabyasachi ;
Roy, Ajit K. ;
Anderson, David P. .
CARBON, 2008, 46 (05) :806-817
[10]   Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications [J].
Georgakilas, Vasilios ;
Otyepka, Michal ;
Bourlinos, Athanasios B. ;
Chandra, Vimlesh ;
Kim, Namdong ;
Kemp, K. Christian ;
Hobza, Pavel ;
Zboril, Radek ;
Kim, Kwang S. .
CHEMICAL REVIEWS, 2012, 112 (11) :6156-6214