Synthesis and Lithium Storage Mechanism of Ultrafine MoO2 Nanorods

被引:227
作者
Guo, Bingkun [2 ]
Fang, Xiangpeng [2 ]
Li, Bin [1 ]
Shi, Yifeng [1 ]
Ouyang, Chuying [3 ]
Hu, Yong-Sheng [2 ]
Wang, Zhaoxiang [2 ]
Stucky, Galen D. [4 ]
Chen, Liquan [2 ,5 ]
机构
[1] Hangzhou Normal Univ, Coll Mat Chem & Chem Engn, Hangzhou 310036, Zhejiang, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100080, Peoples R China
[3] Jiangxi Normal Univ, Dept Phys, Nanchang 330022, Peoples R China
[4] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
[5] Chonnam Natl Univ, Sch Mat Sci & Engn, Kwangju 500757, South Korea
基金
美国国家科学基金会;
关键词
molybdenum dioxide; nanorods; nanocasting; Li ion batteries; CORE-SHELL NANOWIRES; LI-ION BATTERIES; ANODE MATERIAL; CARBON NANOTUBES; MESOPOROUS SILICA; HIGH-CAPACITY; ELECTRODE PERFORMANCE; LIMN2O4; NANORODS; IN-SITU; INTERCALATION;
D O I
10.1021/cm202459r
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ultrafine MoO2 nanorods with a diameter of similar to 5 nm were successfully synthesized by a nanocasting method using mesoporous silica SBA-15 as hard template. This material demonstrates high reversible capacity, excellent cycling performance, and good rate capacity as an anode electrode material for Li ion batteries. The significant enhancement in the electrochemical Li storage performance in ultrafine MoO2 nanorods is attributed to the nanorod structure with small diameter and efficient one-dimensional electron transport pathways. Moreover, density functional theory calculations were performed to elucidate the Li uptake/removal mechanism in the MoO2 electrodes, which can help us understand the unique cycling behavior of MoO2 material.
引用
收藏
页码:457 / 463
页数:7
相关论文
共 65 条
[1]   Lithium-ion intercalation into TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
García, R ;
Bruce, PG .
ADVANCED MATERIALS, 2005, 17 (07) :862-+
[2]   TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte [J].
Armstrong, Graham ;
Armstrong, A. Robert ;
Bruce, Peter G. ;
Reale, Priscilla ;
Scrosati, Bruno .
ADVANCED MATERIALS, 2006, 18 (19) :2597-+
[3]   LITHIUM INTERCALATION CELLS WITHOUT METALLIC LITHIUM - MOO2/LICOO2 AND WO2/LICOO2 [J].
AUBORN, JJ ;
BARBERIO, YL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (03) :638-641
[4]   On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries [J].
Aurbach, D ;
Markovsky, B ;
Weissman, I ;
Levi, E ;
Ein-Eli, Y .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :67-86
[5]   Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity [J].
Balaya, P ;
Li, H ;
Kienle, L ;
Maier, J .
ADVANCED FUNCTIONAL MATERIALS, 2003, 13 (08) :621-625
[6]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[7]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[8]  
Cakan R D, 2004, CHEM COMMUN, V32, P3759
[9]   Synthesis, characterization and lithium-storage performance of MoO2/carbon hybrid nanowires [J].
Cao, Qingsheng ;
Yang, Lichun ;
Lu, Xinchun ;
Mao, Jianjiang ;
Zhang, Yahong ;
Wu, Yuping ;
Tang, YI .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (14) :2807-2812
[10]   Single-Walled Carbon Nanotube-Based Chemiresistive Affinity Biosensors for Small Molecules: Ultrasensitive Glucose Detection [J].
Cella, Lakshmi N. ;
Chen, Wilfred ;
Myung, Nosang V. ;
Mulchandani, Ashok .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (14) :5024-+