Femtosecond laser nanostructuring for femtosensitive DNA detection

被引:6
作者
Alubaidy, M. [2 ]
Soleymani, L. [3 ,4 ]
Venkatakrishnan, K. [2 ]
Tan, B. [1 ]
机构
[1] Ryerson Univ, Dept Aerosp Engn, Toronto, ON M3N 2H8, Canada
[2] Ryerson Univ, Dept Mech Engn, Toronto, ON M3N 2H8, Canada
[3] McMaster Univ, Dept Engn Phys, Hamilton, ON L8S 4L7, Canada
[4] McMaster Univ, Sch Biomed Engn, Hamilton, ON L8S 4L7, Canada
关键词
Nanofibers; DNA; Biosensor; Ultrafast laser; GOLD NANOPARTICLES; NANOSPHERES; DEPOSITION; GROWTH;
D O I
10.1016/j.bios.2011.12.023
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
In this paper, a new concept to achieve improved probe-target recognition has been devised by introducing a novel class of DNA-functionalized three-dimensional (3D), stand-free, and nanostructured electrodes. The gold nanofibrous electrodes were created using MHZ ultrafast laser material processing in air at ambient conditions. The developed nanofibrous DNA biosensor was characterized by cyclic voltammetry with the use of ferrocyanide as an electrochemical redox indicator. Currently, electrochemical signal enhancement which is of great significance for improving the sensitivity in DNA detection remains a great challenge. Through, enhanced surface area-to-volume ratio and more efficient arrangement of probe molecules on nanofibrous electrodes, our newly developed electrode system overcomes some of the sensitivity challenges of the existing systems. This nanofiber-based system realizes femtomolar (fM) sensitivity toward complementary target DNA, and demonstrates a very wide dynamic range (from 1 fM to 1 nM). (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:82 / 87
页数:6
相关论文
共 39 条
[1]  
Baudhuin P., 1989, APPLICATIONS, V2, P1
[2]   Electrical signal amplification of DNA hybridization by nanoparticles in a nanoscale gap [J].
Chen, Chun-Chi ;
Ko, Fu-Hsiang ;
Chen, Chieh-Tso ;
Liu, Tzeng-Feng ;
Chang, Edward Yi ;
Yang, Yuh-Shyong ;
Yan, Su-Jan ;
Chu, Tieh-Chi .
APPLIED PHYSICS LETTERS, 2007, 91 (25)
[3]   Flow injection amperometric detection at enzyme-modified gold nanoelectrodes [J].
Delvaux, M ;
Demoustier-Champagne, S ;
Walcarius, A .
ELECTROANALYSIS, 2004, 16 (03) :190-198
[4]   Electrochemical DNA sensors [J].
Drummond, TG ;
Hill, MG ;
Barton, JK .
NATURE BIOTECHNOLOGY, 2003, 21 (10) :1192-1199
[5]   Expression profiling using cDNA microarrays [J].
Duggan, DJ ;
Bittner, M ;
Chen, YD ;
Meltzer, P ;
Trent, JM .
NATURE GENETICS, 1999, 21 (Suppl 1) :10-14
[6]   Designing a novel molecular beacon for surface-immobilized DNA hybridization studies [J].
Fang, XH ;
Liu, XJ ;
Schuster, S ;
Tan, WH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (12) :2921-2922
[7]   Direct Profiling of Cancer Biomarkers in Tumor Tissue Using a Multiplexed Nanostructured Microelectrode Integrated Circuit [J].
Fang, Zhichao ;
Soleymani, Leyla ;
Pampalakis, Georgios ;
Yoshimoto, Maisa ;
Squire, Jeremy A. ;
Sargent, Edward H. ;
Kelley, Shana O. .
ACS NANO, 2009, 3 (10) :3207-3213
[8]   The Role Radius of Curvature Plays in Thiolated Oligonucleotide Loading on Gold Nanoparticles [J].
Hill, Haley D. ;
Millstone, Jill E. ;
Banholzer, Matthew J. ;
Mirkin, Chad A. .
ACS NANO, 2009, 3 (02) :418-424
[9]   The mechanism of nanobump formation in femtosecond pulse laser nanostructuring of thin metal films [J].
Ivanov, Dmitriy S. ;
Rethfeld, Baerbel ;
O'Connor, Gerard M. ;
Glynn, Thomas J. ;
Volkov, Alexey N. ;
Zhigilei, Leonid V. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2008, 92 (04) :791-796
[10]   Ultrasensitive nanostructured platform for the electrochemical sensing of hydrazine [J].
Jena, Bikash Kumar ;
Raj, C. Retna .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (17) :6228-6232