Enhancement of Hot Electron Flow in Plasmonic Nanodiodes by Incorporating PbS Quantum Dots

被引:21
作者
Lee, Changhwan [1 ,2 ]
Choi, Hyekyoung [3 ,4 ]
Nedrygailov, Ievgen I. [2 ]
Lee, Young Keun [1 ,2 ]
Jeong, Sohee [3 ,4 ]
Park, Jeong Young [1 ,2 ]
机构
[1] Korea Adv Inst Sci & Technol, Grad Sch EEWS, Daejeon 305701, South Korea
[2] Inst for Basic Sci Korea, Ctr Nanomat & Chem React, Daejeon 305701, South Korea
[3] Korea Inst Machinery & Mat, Nanomech Syst Res Div, Daejeon 305343, South Korea
[4] Korea Univ Sci & Technol UST, Dept Nanomechatron, Daejeon 305350, South Korea
关键词
hot electrons; plasmonic nanodiode; PbS quantum dots; three-dimensional Schottky barrier; momentum of hot electrons; OXIDE INTERFACES; PHOTODETECTION; NANOSTRUCTURES; NANOPARTICLES; PHOTOEMISSION; ENERGY; NANOCRYSTALS; TRANSITION; EMISSION; DYNAMICS;
D O I
10.1021/acsami.7b16793
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The enhancement, of hot electron generation using plasmonic nanostructures is a promising strategy for developing photovoltaic devices. Here, we show that hot electron flow generated in plasmonic Au/TiO2 nanodiodes by incident light can be amplified when PbS quantum dots are deposited onto the surface of the nanodiodes. The effect is attributed to efficient extraction of hot electrons via a three-dimensional Schottky barrier, thus giving new pathways for hot electron transfer. We also demonstrate a correlation between the photocurrent and Schottky barrier height when using PbS quantum dots with varying size and, ligand treatments that allow us to control the electric properties, (e.g., band gap. and Fermi, level, respectively) of the PbS quantum dots. This simple method introduces a new technique for further improving the power conversion efficiency of thin-film photovoltaic devices.
引用
收藏
页码:5081 / 5089
页数:9
相关论文
共 40 条
  • [1] Semiconductor clusters, nanocrystals, and quantum dots
    Alivisatos, AP
    [J]. SCIENCE, 1996, 271 (5251) : 933 - 937
  • [2] Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
  • [3] Hot Electron Photoemission from Plasmonic Nanostructures: The Role of Surface Photoemission and Transition Absorption
    Babicheva, Viktoriia E.
    Zhukovsky, Sergei V.
    Ikhsanov, Renat Sh.
    Protsenko, Igor E.
    Smetanin, Igor V.
    Uskov, Alexander
    [J]. ACS PHOTONICS, 2015, 2 (08): : 1039 - 1048
  • [4] Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals
    Bernardi, Marco
    Mustafa, Jamal
    Neaton, Jeffrey B.
    Louie, Steven G.
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [5] Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry
    Brown, Ana M.
    Sundararaman, Ravishankar
    Narang, Prineha
    Goddard, William A., III
    Atwater, Harry A.
    [J]. ACS NANO, 2016, 10 (01) : 957 - 966
  • [6] Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange
    Brown, Patrick R.
    Kim, Donghun
    Lunt, Richard R.
    Zhao, Ni
    Bawendi, Moungi G.
    Grossman, Jeffrey C.
    Bulovic, Vladimir
    [J]. ACS NANO, 2014, 8 (06) : 5863 - 5872
  • [7] Hot-Electron Photodetection with a Plasmonic Nanostripe Antenna
    Chalabi, Hamidreza
    Schoen, David
    Brongersma, Mark L.
    [J]. NANO LETTERS, 2014, 14 (03) : 1374 - 1380
  • [8] Increased open-circuit voltage in a Schottky device using PbS quantum dots with extreme confinement
    Choi, Hyekyoung
    Kim, Jun Kwan
    Song, Jung Hoon
    Kim, Youngjo
    Jeong, Sohee
    [J]. APPLIED PHYSICS LETTERS, 2013, 102 (19)
  • [9] Steric-Hindrance-Driven Shape Transition in PbS Quantum Dots: Understanding Size-Dependent Stability
    Choi, Hyekyoung
    Ko, Jae-Hyeon
    Kim, Yong-Hyun
    Jeong, Sohee
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (14) : 5278 - 5281
  • [10] Christopher P, 2011, NAT CHEM, V3, P467, DOI [10.1038/NCHEM.1032, 10.1038/nchem.1032]