Hypoxia induces downregulation of PPAR-γ in isolated pulmonary arterial smooth muscle cells and in rat lung via transforming growth factor-β signaling

被引:49
作者
Gong, Kaizheng [1 ,5 ]
Xing, Dongqi [1 ]
Li, Peng [1 ]
Aksut, Baran [1 ]
Ambalavanan, Namasivayam [2 ]
Yang, Qinglin [3 ]
Nozell, Susan E. [4 ]
Oparil, Suzanne [1 ]
Chen, Yiu-Fai [1 ]
机构
[1] Univ Alabama Birmingham, Dept Med, Vasc Biol & Hypertens Program, Birmingham, AL 35294 USA
[2] Univ Alabama Birmingham, Dept Pediat, Birmingham, AL 35294 USA
[3] Univ Alabama Birmingham, Dept Nutr Sci, Birmingham, AL 35294 USA
[4] Univ Alabama Birmingham, Dept Cell Biol, Birmingham, AL 35294 USA
[5] Yangzhou Univ, Clin Med Sch 2, Dept Cardiol, Yangzhou, Peoples R China
关键词
peroxisome proliferator-activated receptor-gamma; pulmonary vascular remodeling; ACTIVATED-RECEPTOR-GAMMA; GENE-EXPRESSION; HYPERTENSION; INHIBITION; PROGRESSION; PROTEIN;
D O I
10.1152/ajplung.00062.2011
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Gong K, Xing D, Li P, Aksut B, Ambalavanan N, Yang Q, Nozell SE, Oparil S, Chen Y-F. Hypoxia induces downregulation of PPAR-gamma in isolated pulmonary arterial smooth muscle cells and in rat lung via transforming growth factor-beta signaling. Am J Physiol Lung Cell Mol Physiol 301: L899-L907, 2011. First published September 16, 2011; doi: 10.1152/ajplung.00062.2011.-Chronic hypoxia activates transforming growth factor-beta (TGF-beta) signaling and leads to pulmonary vascular remodeling. Pharmacological activation of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) has been shown to prevent hypoxia-induced pulmonary hypertension and vascular remodeling in rodent models, suggesting a vasoprotective effect of PPAR-gamma under chronic hypoxic stress. This study tested the hypothesis that there is a functional interaction between TGF-beta/Smad signaling pathway and PPAR-gamma in isolated pulmonary artery small muscle cells (PASMCs) under hypoxic stress. We observed that chronic hypoxia led to a dramatic decrease of PPAR-gamma protein expression in whole lung homogenates (rat and mouse) and hypertrophied pulmonary arteries and isolated PASMCs. Using a transgenic model of mouse with inducible overexpression of a dominant-negative mutant of TGF-beta receptor type II, we demonstrated that disruption of TGF-beta pathway significantly attenuated chronic hypoxia-induced downregulation of PPAR-gamma in lung. Similarly, in isolated rat PASMCs, antagonism of TGF-beta signaling with either a neutralizing antibody to TGF-beta or the selective TGF-beta receptor type I inhibitor SB431542 effectively attenuated hypoxia-induced PPAR-gamma downregulation. Furthermore, we have demonstrated that TGF-beta 1 treatment suppressed PPAR-gamma expression in PASMCs under normoxia condition. Chromatin immunoprecipitation analysis showed that TGF-beta 1 treatment significantly increased binding of Smad2/3, Smad4, and the transcriptional corepressor histone deacetylase 1 to the PPAR-gamma promoter in PASMCs. Conversely, treatment with the PPAR-gamma agonist rosiglitazone attenuated TGF-beta 1-induced extracellular matrix molecule expression and growth factor in PASMCs. These data provide strong evidence that activation of TGF-beta/Smad signaling, via transcriptional suppression of PAR-gamma expression, mediates chronic hypoxia-induced downregulation of PPAR-gamma expression in lung.
引用
收藏
页码:L899 / L907
页数:9
相关论文
共 33 条
  • [1] Transforming growth factor-β signaling mediates hypoxia-induced pulmonary arterial remodeling and inhibition of alveolar development in newborn mouse lung
    Ambalavanan, Namasivayam
    Nicola, Teodora
    Hagood, James
    Bulger, Arlene
    Serra, Rosa
    Murphy-Ullrich, Joanne
    Oparil, Suzanne
    Chen, Yiu-Fai
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2008, 295 (01) : L86 - L95
  • [2] Peroxisome proliferator-activated receptor gamma (PPARγ) expression is decreased in pulmonary hypertension and affects endothelial cell growth
    Ameshima, S
    Golpon, H
    Cool, CD
    Chan, D
    Vandivier, RW
    Gardai, SJ
    Wick, M
    Nemenoff, RA
    Geraci, MW
    Voelkel, NF
    [J]. CIRCULATION RESEARCH, 2003, 92 (10) : 1162 - 1169
  • [3] Basic Science of Pulmonary Arterial Hypertension for Clinicians New Concepts and Experimental Therapies
    Archer, Stephen L.
    Weir, E. Kenneth
    Wilkins, Martin R.
    [J]. CIRCULATION, 2010, 121 (18) : 2045 - U175
  • [4] Transforming growth factor-βs and vascular disorders
    Bobik, Alex
    [J]. ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2006, 26 (08) : 1712 - 1720
  • [5] Dominant negative mutation of the TGF-β receptor blocks hypoxia-induced pulmonary vascular remodeling
    Chen, YF
    Feng, JA
    Li, P
    Xing, DQ
    Zhang, Y
    Serra, R
    Ambalavanan, N
    Majid-Hassan, E
    Oparil, S
    [J]. JOURNAL OF APPLIED PHYSIOLOGY, 2006, 100 (02) : 564 - 571
  • [6] Rosiglitazone attenuates hypoxia-induced pulmonary arterial remodeling
    Crossno, Joseph T.
    Garat, Chrystelle V.
    Reusch, Jane E. B.
    Morris, Kenneth G.
    Dempsey, Edward C.
    McMurtry, Ivan F.
    Stenmark, Kurt R.
    Klemm, Dwight J.
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2007, 292 (04) : L885 - L897
  • [7] Early stimulation and late inhibition of peroxisome proliferator-activated receptor γ (PPARγ) gene expression by transforming growth factor β in human aortic smooth muscle cells:: role of early growth-response factor-1 (Egr-1), activator protein 1 (AP1) and Smads
    Fu, MG
    Zhang, JF
    Lin, YM
    Zhu, XJ
    Zhao, LN
    Ahmad, M
    Ehrengruber, MU
    Chen, YQE
    [J]. BIOCHEMICAL JOURNAL, 2003, 370 : 1019 - 1025
  • [8] Gough NR, 2008, SCI SIGNAL, V1, pec348
  • [9] Tie2-mediated loss of peroxisome proliferator-activated receptor-γ in mice causes PDGF receptor-β-dependent pulmonary arterial muscularization
    Guignabert, C.
    Alvira, C. M.
    Alastalo, T. -P.
    Sawada, H.
    Hansmann, G.
    Zhao, M.
    Wang, L.
    El-Bizri, N.
    Rabinovitch, M.
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2009, 297 (06) : L1082 - L1090
  • [10] Hamblin M, 2009, ANTIOXID REDOX SIGN, V11, P1415, DOI [10.1089/ars.2008.2280, 10.1089/ARS.2008.2280]