Multiplier and averaging operators in the Banach spaces ces(p), 1 < p < ∞

被引:0
作者
Albanese, Angela A. [1 ]
Bonet, Jose [2 ]
Ricker, Werner J. [3 ]
机构
[1] Univ Salento, Dipartimento Matemat & Fis E De Giorgi, CP 193, I-73100 Lecce, Italy
[2] Univ Politecn Valencia, IUMPA, Valencia 46071, Spain
[3] Katholische Univ Eichstatt Ingolstadt, Math Geog Fak, D-85072 Eichstatt, Germany
关键词
Banach sequence spaces ces(p); Multiplier; Compact operator; Cesaro operator; Mean ergodic operator; CESA RO OPERATOR;
D O I
10.1007/s11117-018-0601-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Banach sequence spaces ces(p) are generated in a specified way via the classical spaces p,1<p<. For each pair 1<p,q< the (p,q)-multiplier operators from ces(p) into ces(q) are known. We determine precisely which of these multipliers is a compact operator. Moreover, for the case of p=q a complete description is presented of those (p,p)-multiplier operators which are mean (resp. uniform mean) ergodic. A study is also made of the linear operator C which maps a numerical sequence to the sequence of its averages. All pairs 1<p,q< are identified for which C maps ces(p) into ces(q) and, amongst this collection, those which are compact. For p=q, the mean ergodic properties of C are also treated.
引用
收藏
页码:177 / 193
页数:17
相关论文
共 21 条
  • [1] THE CESARO OPERATOR IN THE FRECHET SPACES lp+ AND Lp-
    Albanese, Angela A.
    Bonet, Jose
    Ricker, Werner J.
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2017, 59 (02) : 273 - 287
  • [2] Convergence of arithmetic means of operators in Frechet spaces
    Albanese, Angela A.
    Bonet, Jose
    Ricker, Werner J.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (01) : 160 - 173
  • [3] [Anonymous], 1956, Infinite sequences and series
  • [4] Bennett G, 1996, MEM AM MATH SOC, V120, pR8
  • [5] Some properties of N-supercyclic operators
    Bourdon, PS
    Feldman, NS
    Shapiro, JH
    [J]. STUDIA MATHEMATICA, 2004, 165 (02) : 135 - 157
  • [6] The CesA ro Operator and Unconditional Taylor Series in Hardy Spaces
    Curbera, Guillermo P.
    Ricker, Werner J.
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 83 (02) : 179 - 195
  • [7] Solid Extensions of the CesA ro Operator on a"" p and c0
    Curbera, Guillermo P.
    Ricker, Werner J.
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2014, 80 (01) : 61 - 77
  • [8] A Feature of Averaging
    Curbera, Guillermo P.
    Ricker, Werner J.
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2013, 76 (03) : 447 - 449
  • [9] L1-spaces of vector measures defined on δ-rings
    Delgado, O
    [J]. ARCHIV DER MATHEMATIK, 2005, 84 (05) : 432 - 443
  • [10] Optimal domains for kernel operators on [0, ∞) x [0, ∞)
    Delgado, Olvido
    [J]. STUDIA MATHEMATICA, 2006, 174 (02) : 131 - 145