Scaling laws in stochastic system with anomalous diffusion

被引:3
作者
Kharchenko, Dmitrii [1 ]
机构
[1] Sumy State Univ, Modeling Complex Syst Dept, UA-40007 Sumy, Ukraine
来源
FLUCTUATION AND NOISE LETTERS | 2002年 / 2卷 / 04期
关键词
anomalous diffusion; fractal dimension; multiplicative noise;
D O I
10.1142/S0219477502000865
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the stochastic system with an anomalous diffusion. According to the obtained relations between characteristics of diffusion processes the special class of models which exhibit the anomalous behaviour is considered. It was shown that indexes of super- and subdiffusion are related to the Hurst exponent which defines the properties of the phase space inherent to the proposed model of stochastic system.
引用
收藏
页码:L273 / L278
页数:6
相关论文
共 8 条
  • [1] On strong anomalous diffusion
    Castiglione, P
    Mazzino, A
    Muratore-Ginanneschi, P
    Vulpiani, A
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1999, 134 (01) : 75 - 93
  • [2] Feder J., 1988, FRACTALS
  • [3] FRACTIONAL MASTER-EQUATIONS AND FRACTAL TIME RANDOM-WALKS
    HILFER, R
    ANTON, L
    [J]. PHYSICAL REVIEW E, 1995, 51 (02) : R848 - R851
  • [4] EXACT-SOLUTIONS FOR A CLASS OF FRACTAL TIME RANDOM-WALKS
    HILFER, R
    [J]. FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1995, 3 (01): : 211 - 216
  • [5] Hilfer R., 2000, Applications of Fractional Calculus in Physics, V35
  • [6] Evolution of the system with multiplicative noise
    Olemskoi, AI
    Kharchenko, DO
    [J]. PHYSICA A, 2001, 293 (1-2): : 178 - 188
  • [7] Risken H., 1989, The Fokker-Plank Equation. Methods of Solutions and Applications
  • [8] Fractional kinetic equations: solutions and applications
    Saichev, AI
    Zaslavsky, GM
    [J]. CHAOS, 1997, 7 (04) : 753 - 764