On the Star-Critical Ramsey Number of a Forest Versus Complete Graphs

被引:0
作者
Kamranian, Azam [1 ]
Raeisi, Ghaffar [1 ]
机构
[1] Shahrekord Univ, Dept Math Sci, POB 115, Shahrekord, Iran
来源
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE | 2022年 / 46卷 / 02期
关键词
Ramsey number; Star-critical; Size Ramsey; Forest; Complete graphs;
D O I
10.1007/s40995-021-01256-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Let G and G(1),G(2),....,G(t) be given graphs. By G -> (G(1),G(2),...,G(t)), we mean if the edges of G are arbitrarily colored by t colors, then for some i, 1 <= i <= t, the spanning subgraph of G whose edges are colored with the i-th color, contains a copy of G(i). The Ramsey number R(G(1),G(2),...,G(t)) is the smallest positive integer n such that K-n -> (G(1),G(2),...,G(t)), and the size Ramsey number R(G(1),G(2)...,G(t)) is defined as min{vertical bar E(G)vertical bar: G -> (G(1),G(2),...,G(t))}. Also, for given graphs G(1),G(2),...,G(t) with r=R(G(1),G(2),...,G(t)), the star-critical Ramsey number R*(G(1),G(2,)...,G(t)) is defined as min{delta(G): G I K-r, G -> (G(1),G(2),...,G(t))}. In this paper, the Ramsey number and also the star-critical Ramsey number of a forest versus any number of complete graphs will be computed exactly in terms of the Ramsey number of the complete graphs. As a result, the computed star-critical Ramsey number is used to give a tight bound for the size Ramsey number of a forest versus a complete graph.
引用
收藏
页码:499 / 505
页数:7
相关论文
共 22 条
[11]  
Horn P, 2014, ELECTRON J COMB, V21
[12]   Degree Ramsey numbers for cycles and blowups of trees [J].
Jiang, Tao ;
Milans, Kevin G. ;
West, Douglas B. .
EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (02) :414-423
[13]   Decomposition of bounded degree graphs into C4-free subgraphs [J].
Kang, Ross J. ;
Perarnau, Guillem .
EUROPEAN JOURNAL OF COMBINATORICS, 2015, 44 :99-105
[14]   Degree Ramsey Numbers of Graphs [J].
Kinnersley, William B. ;
Milans, Kevin G. ;
West, Douglas B. .
COMBINATORICS PROBABILITY & COMPUTING, 2012, 21 (1-2) :229-253
[15]   Some star-critical Ramsey numbers [J].
Li, Zhen ;
Li, Yusheng .
DISCRETE APPLIED MATHEMATICS, 2015, 181 :301-305
[16]   A FOLKMAN LINEAR FAMILY [J].
Lin, Qizhong ;
Li, Yusheng .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (04) :1988-1998
[17]   RAMSEY PROPERTY FOR GRAPHS WITH FORBIDDEN COMPLETE SUBGRAPHS [J].
NESETRIL, J ;
RODL, V .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1976, 20 (03) :243-249
[18]  
Radziszowski SP, 2017, ELECTRON J COMB
[19]   On a problem of formal logic [J].
Ramsey, FP .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1930, 30 :264-286
[20]   On size Ramsey numbers of graphs with bounded degree [J].
Rödl, V ;
Szemerédi, E .
COMBINATORICA, 2000, 20 (02) :257-262