Interpolation and duality in spaces of pseudocontinuable functions

被引:0
作者
Dyakonov, Konstantin M. [1 ,2 ]
机构
[1] Univ Barcelona, Dept Matemat & Informat, IMUB, BGSMath, Gran Via 585, E-08007 Barcelona, Spain
[2] ICREA, Pg Lluis Co 23, E-08010 Barcelona, Spain
关键词
Hardy space; Smoothness class; BMO; Inner function; Interpolating Blaschke product; Star-invariant subspace; Duality; STAR-INVARIANT SUBSPACES; INNER FUNCTIONS; THEOREMS;
D O I
10.1007/s00209-022-03109-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an inner function theta on the unit disk, let K-theta(p) := H-p boolean AND theta(z) over bar(Hp) over bar be the associated starinvariant subspace of the Hardy space H-p. Also, we put K-*theta := K(theta)2 boolean AND BMO. Assuming that B = B-Z is an interpolating Blaschke product with zeros Z = {z(j)}, we characterize, for a number of smoothness classes X, the sequences of values W = {w(j)} such that the interpolation problem f vertical bar(Z) =W has a solution f in K-B(2) boolean AND X. Turning to the case of a general inner function theta, we further establish a non-duality relation between K-theta(1) and K-*theta. Namely, we prove that the latter space is properly contained in the dual of the former, unless theta is a finite Blaschke product. From this we derive an amusing non-interpolation result for functions in K-*B, with B = B-Z as above.
引用
收藏
页码:1477 / 1488
页数:12
相关论文
共 22 条