The noncommutative wiener lemma, linear independence, and spectral properties of the algebra of time-frequency shift operators

被引:29
作者
Balan, Radu [1 ]
机构
[1] Siemens Corp Res, Princeton, NJ 08540 USA
关键词
D O I
10.1090/S0002-9947-08-04448-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we analyze the Banach *- algebra of time-frequency shifts with absolutely summable coefficients. We prove a noncommutative version of the Wiener lemma. We also construct a faithful tracial state on this algebra which proves the algebra contains no compact operators. As a corollary we obtain a special case of the Heil- Ramanathan- Topiwala conjecture regarding linear independence of finitely many time- frequency shifts of one L-2 function. We also estimate the coefficient decay of the inverse of finite linear combinations of time- frequency shifts.
引用
收藏
页码:3921 / 3941
页数:21
相关论文
共 31 条
[1]   Excesses of Gabor frames [J].
Balan, R ;
Casazza, PG ;
Heil, C ;
Landau, Z .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2003, 14 (02) :87-106
[2]   Density, overcompleteness, and localization of frames. II. Gabor systems [J].
Balan, Radu ;
Casazza, Peter G. ;
Heil, Christopher ;
Landau, Zeph .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2006, 12 (03) :309-344
[3]   Density, overcompleteness, and localization of frames. I. Theory [J].
Balan, Radu ;
Casazza, Peter G. ;
Heil, Christopher ;
Landau, Zeph .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2006, 12 (02) :105-143
[4]   Estimates for the entries of inverse matrices and the spectral analysis of linear operators [J].
Baskakov, AG .
IZVESTIYA MATHEMATICS, 1997, 61 (06) :1113-1135
[5]  
Daubechies I., 1995, J FOURIER ANAL APPL, V1, P437, DOI [DOI 10.1007/S00041-001-4018-3, 10.1007/s00041-001-4018-30, 10.1007/s00041-001-4018-3]
[6]   Intrinsic localization of frames [J].
Fornasier, M ;
Gröchenig, K .
CONSTRUCTIVE APPROXIMATION, 2005, 22 (03) :395-415
[7]   THE BAND METHOD FOR POSITIVE AND STRICTLY CONTRACTIVE EXTENSION PROBLEMS - AN ALTERNATIVE VERSION AND NEW APPLICATIONS [J].
GOHBERG, I ;
KAASHOEK, MA ;
WOERDEMAN, HJ .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1989, 12 (03) :343-382
[8]   Symmetry and inverse-closedness of matrix algebras and functional calculus for infinite matrices [J].
Gröchenig, K ;
Leinert, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (06) :2695-2711
[9]   Wiener's Lemma for twisted convolution and Gabor frames [J].
Gröchenig, K ;
Leinert, M .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (01) :1-18
[10]   Loealization of frames, Banach frames, and the invertibility of the frame operator [J].
Gröchenig, K .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2004, 10 (02) :105-132