Data-Driven 3D Primitives for Single Image Understanding

被引:90
作者
Fouhey, David F. [1 ]
Gupta, Abhinav [1 ]
Hebert, Martial [1 ]
机构
[1] Carnegie Mellon Univ, Inst Robot, Pittsburgh, PA 15213 USA
来源
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV) | 2013年
关键词
D O I
10.1109/ICCV.2013.421
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
What primitives should we use to infer the rich 3D world behind an image? We argue that these primitives should be both visually discriminative and geometrically informative and we present a technique for discovering such primitives. We demonstrate the utility of our primitives by using them to infer 3D surface normals given a single image. Our technique substantially outperforms the state-of-the-art and shows improved cross-dataset performance.
引用
收藏
页码:3392 / 3399
页数:8
相关论文
共 35 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]  
[Anonymous], 2007, NIPS
[3]  
[Anonymous], 1971, IEEE C SYST CONTR
[4]  
[Anonymous], ECCV
[5]  
[Anonymous], 2009, ICCV
[6]  
[Anonymous], 2012, ADV NEURAL INF PROCE
[7]  
[Anonymous], 2012, ECCV
[8]  
[Anonymous], 2012, ECCV
[9]  
[Anonymous], 2010, CVPR
[10]  
[Anonymous], 2010, ECCV