Continuity of approximate solution mappings for parametric equilibrium problems

被引:48
作者
Li, X. B. [1 ]
Li, S. J. [1 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Parametric equilibrium problems; Approximate solution mapping; Hausdorff upper semicontinuity and Hausdorff lower semicontinuity; Berge upper semicontinuity and Berge lower semicontinuity; Scalarization; SOLUTION SETS; LOWER SEMICONTINUITY; HOLDER CONTINUITY; SENSITIVITY; STABILITY;
D O I
10.1007/s10898-010-9641-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we obtain sufficient conditions for Hausdorff continuity and Berge continuity of an approximate solution mapping for a parametric scalar equilibrium problem. By using a scalarization method, we also discuss the Berge lower semicontinuity and Berge continuity of a approximate solution mapping for a parametric vector equilibrium problem.
引用
收藏
页码:541 / 548
页数:8
相关论文
共 22 条
[1]   On the Holder continuity of solutions to parametric multivalued vector equilibrium problems [J].
Anh, L. Q. ;
Khanh, P. Q. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 321 (01) :308-315
[2]   Various kinds of semicontinuity and the solution sets of parametric multivalued symmetric vector quasiequilibrium problems [J].
Anh, Lam Quoc ;
Khanh, Phan Quoc .
JOURNAL OF GLOBAL OPTIMIZATION, 2008, 41 (04) :539-558
[3]   Semicontinuity of the approximate solution sets of multivalued quasiequilibrium problems [J].
Anh, Lam Quoc ;
Khanh, Phan Quoc .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2008, 29 (1-2) :24-42
[4]   Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems [J].
Anh, LQ ;
Khanh, PQ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 294 (02) :699-711
[5]   An existence result for the generalized vector equilibrium problem [J].
Ansari, QH ;
Yao, JC .
APPLIED MATHEMATICS LETTERS, 1999, 12 (08) :53-56
[6]  
Aubin J.P., 1994, Differential Inclusions
[7]  
Bank B, 1982, Non-linear parametric optimization, DOI DOI 10.1007/978-3-0348-6328-5
[8]  
Berge C., 1963, Topological Spaces, Including a Treatment of Multi -Valued Functions Vector Spaces and Convexity
[9]   A note on stability for parametric equilibrium problems [J].
Bianchi, M ;
Pini, R .
OPERATIONS RESEARCH LETTERS, 2003, 31 (06) :445-450
[10]   Sensitivity for parametric vector equilibria [J].
Bianchi, Monica ;
Pini, Rita .
OPTIMIZATION, 2006, 55 (03) :221-230