TRACE INEQUALITIES FOR FRACTIONAL INTEGRALS IN CENTRAL MORREY SPACES

被引:0
作者
Imerlishvili, Giorgi [1 ,2 ]
机构
[1] Georgian Tech Univ, Fac Informat & Control Syst, 6Building,77 Kostava, Tbilisi 0175, Georgia
[2] Javakhishvili Tbilisi State Univ, A Razmadze Math Inst 1, 2 Merab Aleksidze 2Lane, Tbilisi 0193, Georgia
基金
美国国家科学基金会;
关键词
Trace inequalities; Fractional integrals; Central Morrey spaces; Quasi-metric measure spaces; Space of homogeneous type; Boundedness;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the trace inequality for fractional integrals K-alpha in central Morrey spaces. In particular, we establish necessary condition and sufficient condition governing the inequality vertical bar vertical bar K(alpha)f vertical bar vertical bar(q,lambda 2)(La) (X,nu) <= C vertical bar vertical bar f vertical bar vertical bar (p,lambda 1)(La) (X,mu)(,) where (X, rho, mu) is a space of homogeneous type, a is a point in X and nu is another measure on X. As a corollary, we have necessary and sufficient conditions on power-type weights d nu (x) = d(a, x)(beta)d mu(x) for the trace inequality. The results are new even for the Euclidean spaces.
引用
收藏
页码:447 / 450
页数:4
相关论文
共 50 条
[21]   CHARACTERIZATIONS FOR THE GENERALIZED FRACTIONAL INTEGRAL OPERATORS ON MORREY SPACES [J].
Eridani ;
Gunawan, Hendra ;
Nakai, Eiichi ;
Sawano, Yoshihiro .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (02) :761-777
[22]   Generalized Morrey spaces and trace operator [J].
Nakamura, Shohei ;
Noi, Takahiro ;
Sawano, Yoshihiro .
SCIENCE CHINA-MATHEMATICS, 2016, 59 (02) :281-336
[23]   Two-weight norm inequalities for fractional maximal functions and fractional integral operators on weighted Morrey spaces [J].
Pan, Junren ;
Sun, Wenchang .
MATHEMATISCHE NACHRICHTEN, 2020, 293 (05) :970-982
[24]   FRACTIONAL INTEGRAL OPERATORS ON GRAND MORREY SPACES AND GRAND HARDY-MORREY SPACES [J].
Ho, Kwok-Pun .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (02) :755-774
[25]   Fractional integrals on modulation spaces [J].
Tomita, N .
MATHEMATISCHE NACHRICHTEN, 2006, 279 (5-6) :672-680
[26]   Stein-Weiss inequalities on local Morrey spaces with variable exponents [J].
Ho, Kwok-Pun .
ILLINOIS JOURNAL OF MATHEMATICS, 2024, 68 (02) :399-413
[27]   Generalized fractional maximal operators and vector-valued inequalities on generalized Orlicz-Morrey spaces [J].
Hakim, Denny Ivanal ;
Nakai, Eiichi ;
Sawano, Yoshihiro .
REVISTA MATEMATICA COMPLUTENSE, 2016, 29 (01) :59-90
[28]   On the Commutator of Marcinkiewicz Integrals with Rough Kernels in Variable Morrey-Type Spaces [J].
Qu, M. ;
Wang, L. .
UKRAINIAN MATHEMATICAL JOURNAL, 2020, 72 (07) :1080-1099
[29]   INEQUALITIES FOR ENTIRE FUNCTIONS OF EXPONENTIAL TYPE IN MORREY SPACES [J].
Burenkov, V., I ;
Joseph, D. J. .
EURASIAN MATHEMATICAL JOURNAL, 2022, 13 (03) :92-99
[30]   Variation operators for singular integrals and their commutators on weighted Morrey spaces and Sobolev spaces [J].
Liu, Feng ;
Cui, Peng .
SCIENCE CHINA-MATHEMATICS, 2022, 65 (06) :1267-1292