On the approximation of spectra of linear operators on Hilbert spaces

被引:54
作者
Hansen, Anders C. [1 ]
机构
[1] Univ Cambridge, DAMTP, Cambridge CB3 0WA, England
关键词
linear operator; Hilbert space; C*-algebras; spectral theory; spectrum; eigenvalues;
D O I
10.1016/j.jfa.2008.01.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present several new techniques for approximating spectra of linear operators (not necessarily bounded) on an infinite-dimensional, separable Hilbert space. Our approach is to take well-known techniques from finite-dimensional matrix analysis and show how they can be generalized to an infinite-dimensional setting to provide approximations of spectra of elements in a large class of operators. We conclude by proposing a solution to the general problem of approximating the spectrum of an arbitrary bounded operator by introducing the n-pseudospectrum and argue how that can be used as an approximation to the spectrum. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:2092 / 2126
页数:35
相关论文
共 32 条
[1]  
Aronszajn N., 1951, P S SPECTRAL THEORY, P179
[2]   C-ASTERISK-ALGEBRAS AND NUMERICAL LINEAR ALGEBRA [J].
ARVESON, W .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :333-360
[3]  
Arveson W., 1994, Contemp. Math., V167, P114
[4]  
Arveson W., 1993, Acta Sci. Math. (Szeged), V57, P11
[5]  
Arveson W., 1993, Res. Notes Math., V5, P1
[6]  
Arveson W., 1991, J. Operator Theory, V26, P225
[7]  
Bedos E., 1997, EXPO MATH, V15, P193
[9]   Approximation of approximation numbers by truncation [J].
Böttcher, A ;
Chithra, AV ;
Namboodiri, MNN .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2001, 39 (04) :387-395
[10]  
Bottcher A., 1999, INTRO LARGE TRUNCATE