The impact of improved signal-to-noise ratios on algorithm performance: Case studies for Landsat class instruments

被引:42
作者
Schott, John R. [1 ]
Gerace, Aaron [1 ]
Woodcock, Curtis E. [1 ,2 ,3 ]
Wang, Shixiong [1 ,2 ,3 ]
Zhu, Zhe [1 ,2 ,3 ]
Wynne, Randolph H. [1 ,4 ]
Blinn, Christine E. [1 ,4 ]
机构
[1] Rochester Inst Technol, Ctr Imaging Sci, 54 Lomb Mem Dr, Rochester, NY 14623 USA
[2] Boston Univ, Dept Earth & Environm, 675 Commonwealth Ave, Boston, MA 02215 USA
[3] Boston Univ, Ctr Remote Sensing, 675 Commonwealth Ave, Boston, MA 02215 USA
[4] Virginia Polytech Inst & State Univ, Dept Forestry, 319 Cheatham Hall, Blacksburg, VA 24061 USA
基金
美国国家航空航天局;
关键词
COVER CLASSIFICATION; MISSION;
D O I
10.1016/j.rse.2016.04.015
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Landsat Operational Land Imager (OLI) has 5 to 10 times better signal-to-noise ratios (SNRs) in all spectral bands than previous Landsat instruments. SNR performance has long been recognized as a value in instrument design, however, the impact on algorithm performance for earth science applications is poorly documented. Since SNR performance may drive design/cost tradeoffs on future missions, a set of experiments were designed to evaluate the impact of various SNR levels on algorithms applied to different science applications. The application areas studied spanned a wide range including water quality, land cover and forestry. The experiments involved producing data sets with a range of signal-dependent SNR values ranging from Landsat 7 ETM + levels to OLI levels. Algorithms were then run on these otherwise identical data sets and evaluation metrics applied to evaluate the relative performance versus SNR. In all cases, performance was shown to be a strong function of SNR with substantial increase in performance as SNR increased (e.g. constituent retrieval errors reduced by a factor of three). However, in some cases, the rate of increase slowed at higher SNR levels. Regrettably, the point of diminishing returns was not the same for all applications leaving significant burden on design teams to decide which application's needs could be fully met in terms of SNR requirements. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:37 / 45
页数:9
相关论文
共 24 条
[11]   Landsat-8 Operational Land Imager Design, Characterization and Performance [J].
Knight, Edward J. ;
Kvaran, Geir .
REMOTE SENSING, 2014, 6 (11) :10286-10305
[12]  
Kruse FA, 2000, P 9 JPL AIRB EARTH S, P1
[13]   General Image-Quality Equation: GIQE [J].
Leachtenauer, JC ;
Malila, W ;
Irvine, J ;
Colburn, L ;
Salvaggio, N .
APPLIED OPTICS, 1997, 36 (32) :8322-8328
[14]   A rule-based method for mapping Canada's wetlands using optical, radar and DEM data [J].
Li, JH ;
Chen, WJ .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (22) :5051-5069
[15]  
Mobley C.D., 1998, Hydrolight 4.0 Users' Guide
[16]   Landsat-8 Operational Land Imager (OLI) Radiometric Performance On-Orbit [J].
Morfitt, Ron ;
Barsi, Julia ;
Levy, Raviv ;
Markham, Brian ;
Micijevic, Esad ;
Ong, Lawrence ;
Scaramuzza, Pat ;
Vanderwerff, Kelly .
REMOTE SENSING, 2015, 7 (02) :2208-2237
[17]   The ESA Medium Resolution Imaging Spectrometer MERIS -: a review of the instrument and its mission [J].
Rast, M ;
Bézy, JL ;
Bruzzi, S .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1999, 20 (09) :1681-1702
[18]   Mapping land-cover modifications over large areas: A comparison of machine learning algorithms [J].
Rogan, John ;
Franklin, Janet ;
Stow, Doug ;
Miller, Jennifer ;
Woodcock, Curtis ;
Roberts, Dar .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (05) :2272-2283
[19]   Landsat-8: Science and product vision for terrestrial global change research [J].
Roy, D. P. ;
Wulder, M. A. ;
Loveland, T. R. ;
Woodcock, C. E. ;
Allen, R. G. ;
Anderson, M. C. ;
Helder, D. ;
Irons, J. R. ;
Johnson, D. M. ;
Kennedy, R. ;
Scambos, Ta. ;
Schaaf, C. B. ;
Schott, J. R. ;
Sheng, Y. ;
Vermote, E. F. ;
Belward, A. S. ;
Bindschadler, R. ;
Cohen, W. B. ;
Gao, F. ;
Hipple, J. D. ;
Hostert, P. ;
Huntington, J. ;
Justice, C. O. ;
Kilic, A. ;
Kovalskyy, V. ;
Lee, Z. P. ;
Lymbumer, L. ;
Masek, J. G. ;
McCorkel, J. ;
Shuai, Y. ;
Trezza, R. ;
Vogelmann, J. ;
Wynne, R. H. ;
Zhu, Z. .
REMOTE SENSING OF ENVIRONMENT, 2014, 145 :154-172
[20]   Sensor performance requirements for the retrieval of atmospheric aerosols by airborne optical remote sensing [J].
Seidel, Felix ;
Schlaepfer, Daniel ;
Nieke, Jens ;
Itten, Klaus I. .
SENSORS, 2008, 8 (03) :1901-1914