Information flows in causal networks

被引:171
作者
Ay, Nihat [1 ,2 ]
Polani, Daniel [3 ]
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[2] Santa Fe Inst, Santa Fe, NM 87501 USA
[3] Univ Hertfordshire, Sch Comp Sci, Algorithms & Adapt Syst Res Grp, Hatfield AL10 9AB, Herts, England
来源
ADVANCES IN COMPLEX SYSTEMS | 2008年 / 11卷 / 01期
关键词
causality; information theory; information flow; Bayesian networks;
D O I
10.1142/S0219525908001465
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use a notion of causal independence based on intervention, which is a fundamental concept of the theory of causal networks, to define a measure for the strength of a causal effect. We call this measure "information flow" and compare it with known information flow measures such as transfer entropy.
引用
收藏
页码:17 / 41
页数:25
相关论文
共 29 条
[11]  
Klyubin AS, 2004, 2004 NASA/DOD CONFERENCE ON EVOLVABLE HARDWARE, PROCEEDINGS, P177
[12]  
Klyubin AS, 2005, IEEE C EVOL COMPUTAT, P128
[13]   Bayesian integration in sensorimotor learning [J].
Körding, KP ;
Wolpert, DM .
NATURE, 2004, 427 (6971) :244-247
[14]   Information transfer between dynamical system components [J].
Liang, XS ;
Kleeman, R .
PHYSICAL REVIEW LETTERS, 2005, 95 (24)
[15]   SELF-ORGANIZATION IN A PERCEPTUAL NETWORK [J].
LINSKER, R .
COMPUTER, 1988, 21 (03) :105-117
[16]  
LLOYD S, 1991, NATO ADV SCI I B-PHY, V256, P131
[17]   CALCULATION OF INFORMATION-FLOW RATE FROM MUTUAL INFORMATION [J].
MATSUMOTO, K ;
TSUDA, I .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (06) :1405-1414
[18]  
MCGILL WJ, 1954, IEEE T INFORM THEORY, V4, P93
[19]  
Olsson L, 2004, 2004 NASA/DOD CONFERENCE ON EVOLVABLE HARDWARE, PROCEEDINGS, P153
[20]  
Pearl J., 2000, Models, reasoning and inference