Information flows in causal networks

被引:171
作者
Ay, Nihat [1 ,2 ]
Polani, Daniel [3 ]
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[2] Santa Fe Inst, Santa Fe, NM 87501 USA
[3] Univ Hertfordshire, Sch Comp Sci, Algorithms & Adapt Syst Res Grp, Hatfield AL10 9AB, Herts, England
来源
ADVANCES IN COMPLEX SYSTEMS | 2008年 / 11卷 / 01期
关键词
causality; information theory; information flow; Bayesian networks;
D O I
10.1142/S0219525908001465
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use a notion of causal independence based on intervention, which is a fundamental concept of the theory of causal networks, to define a measure for the strength of a causal effect. We call this measure "information flow" and compare it with known information flow measures such as transfer entropy.
引用
收藏
页码:17 / 41
页数:25
相关论文
共 29 条
[1]  
[Anonymous], COMPLEXITY ENTROPY P
[2]  
ASHYBY WR, 1952, DESIGN BRAIN
[3]   Could information theory provide an ecological theory of sensory processing? [J].
Aticky, Joseph J. .
NETWORK-COMPUTATION IN NEURAL SYSTEMS, 2011, 22 (1-4) :4-44
[4]   Dynamical properties of strongly interacting Markov chains [J].
Ay, N ;
Wennekers, T .
NEURAL NETWORKS, 2003, 16 (10) :1483-1497
[5]   Geometric robustness theory and biological networks [J].
Ay, Nihat ;
Krakauer, David C. .
THEORY IN BIOSCIENCES, 2007, 125 (02) :93-121
[6]  
Baddeley R., 2000, Information theory and the brain
[7]  
Barlow H., 1959, SENS COMMUN, P217
[8]  
Der R, 1999, CONCUR SYST ENGN SER, V55, P43
[9]   Axioms of causal relevance [J].
Galles, D ;
Pearl, J .
ARTIFICIAL INTELLIGENCE, 1997, 97 (1-2) :9-43
[10]   Representations of space and time in the maximization of information flow in the perception-action loop [J].
Klyubin, Alexander S. ;
Polani, Daniel ;
Nehaniv, Chrystopher L. .
NEURAL COMPUTATION, 2007, 19 (09) :2387-2432