Transferring Experience from Simulation to the Real World for Precise Pick-And-Place Tasks in Highly Cluttered Scenes

被引:10
作者
Kleebergcr, Kilian [1 ]
Voelk, Markus [1 ]
Moosmann, Marius [1 ]
Thiessenhusen, Erik [1 ]
Roth, Florian [1 ]
Bormann, Richard [1 ]
Huber, Marco F. [2 ,3 ]
机构
[1] Fraunhofer Inst Mfg Engn & Automat IPA, Dept Robot & Assist Syst, Nobelstr 12, D-70569 Stuttgart, Germany
[2] Fraunhofer Inst Mfg Engn & Automat IPA, Ctr Cyber Cognit Intelligence CCI, Nobelstr 12, D-70569 Stuttgart, Germany
[3] Univ Stuttgart, Inst Ind Mfg & Management IFF, Allmandring 35, D-70569 Stuttgart, Germany
来源
2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) | 2020年
关键词
D O I
10.1109/IROS45743.2020.9341709
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we introduce a novel learning-based approach for grasping known rigid objects in highly cluttered scenes and precisely placing them based on depth images. Our Placement Quality Network (PQ-Net) estimates the object pose and the quality for each automatically generated grasp pose for multiple objects simultaneously at 92 fps in a single forward pass of a neural network. All grasping and placement trials are executed in a physics simulation and the gained experience is transferred to the real world using domain randomization. We demonstrate that our policy successfully transfers to the real world. PQ-Net outperforms other model-free approaches in terms of grasping success rate and automatically scales to new objects of arbitrary symmetry without any human intervention.
引用
收藏
页码:9681 / 9688
页数:8
相关论文
共 46 条
[1]  
Berscheid Lars, 2019, 2019 International Conference on Robotics and Automation (ICRA), P2125, DOI 10.1109/ICRA.2019.8793952
[2]   Data-Driven Grasp Synthesis-A Survey [J].
Bohg, Jeannette ;
Morales, Antonio ;
Asfour, Tamim ;
Kragic, Danica .
IEEE TRANSACTIONS ON ROBOTICS, 2014, 30 (02) :289-309
[3]  
Bousmalis K, 2018, IEEE INT CONF ROBOT, P4243
[4]   Defining the Pose of Any 3D Rigid Object and an Associated Distance [J].
Bregier, Romain ;
Devernay, Frederic ;
Leyrit, Laetitia ;
Crowley, James L. .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2018, 126 (06) :571-596
[5]   Symmetry Aware Evaluation of 3D Object Detection and Pose Estimation in Scenes of Many Parts in Bulk [J].
Bregier, Romain ;
Devernay, Frederic ;
Leyrit, Laetitia ;
Crowley, James L. .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, :2209-2218
[6]  
Depierre A, 2018, IEEE INT C INT ROBOT, P3511, DOI 10.1109/IROS.2018.8593950
[7]  
El-Shamouty M, 2019, TM-TECH MESS, V86, P673, DOI 10.1515/teme-2019-0072
[8]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[9]   Sim-to-Real via Sim-to-Sim: Data-efficient Robotic Grasping via Randomized-to-Canonical Adaptation Networks [J].
James, Stephen ;
Wohlhart, Paul ;
Kalakrishnan, Mrinal ;
Kalashnikov, Dmitry ;
Irpan, Alex ;
Ibarz, Julian ;
Levine, Sergey ;
Hadsell, Raia ;
Bousmalis, Konstantinos .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :12819-12629
[10]  
Jiang Y, 2011, IEEE INT CONF ROBOT, DOI 10.1109/ICRA.2011.5980145