Self-surface-passivation of titanium doped hematite photoanode for efficient solar water and formaldehyde oxidation

被引:14
作者
Zheng, Dezhou [1 ,2 ]
He, Xinjun [2 ]
Xu, Wei [1 ]
Lu, Xihong [1 ,2 ]
机构
[1] Wuyi Univ, Sch Appl Phys & Mat, Jiangmen 529020, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Sch Chem, MOE Key Lab Bioinorgan & Synthet Chem, KLGHEI Environm & Energy Chem, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Hematite; Doping; Passivation; Water splitting; Formaldehyde oxidation; PHOTOCATALYTIC HYDROGEN GENERATION; VISIBLE-LIGHT; PHOTOELECTROCHEMICAL PERFORMANCE; NANOCRYSTALLINE TITANIA; ENERGY-CONVERSION; NANOROD ARRAYS; CARBON NITRIDE; OXYGEN; NANOSTRUCTURES; FILMS;
D O I
10.1016/j.materresbull.2017.03.063
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Herein, we present a new and available Ti doping and surface self-passivation strategy to significantly boost the PEC performance of the Fe2O3 nanorods for both solar water splitting and formaldehyde (HCHO) oxidation. Upon Ti doping and surface passivation with KOH treatment, the self-passived Ti4+ doped Fe2O3 nanorods exhibit substantially higher PEC performance compared to the pristine Fe2O3 and Ti4+ doped Fe2O3 nanorods, achieving a remarkable photocurrent of 3.7 mA cm(-2) at 1.5 V vs. RHE. Furthermore, these self-passived Ti4+ doped Fe2O3 nanorods also show a 100 mV cathodic shift in onset potential than that of Ti4+ doped Fe2O3 nanorods and excellent durability. Such the substantially improved photoelectrochemical performance is ascribed to the dramatically increased donor densities and reduced electron-hole recommendation as a result of Ti doping and surface passivation layer that formed after KOH treatment. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:354 / 359
页数:6
相关论文
共 48 条
[1]   Hydrogen and electricity generation by photoelectrochemical decomposition of ethanol over nanocrystalline titania [J].
Antoniadou, Maria ;
Bouras, Panagiotis ;
Strataki, Nikoleta ;
Lianos, Panagiotis .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (19) :5045-5051
[2]   Photocatalysis and photoelectrocatalysis using nanocrystalline titania alone or combined with Pt, RuO2 or NiO co-catalysts [J].
Antoniadou, Maria ;
Panagiotopoulou, Paraskevi ;
Kondarides, Dimitris I. ;
Lianos, Panagiotis .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2012, 42 (09) :737-743
[3]   A unique approach for high performance photoelectrochemical water splitting: Utilizing coating and doping methods [J].
Azad, Aryan ;
Kim, Sun Jae .
MATERIALS RESEARCH BULLETIN, 2016, 84 :474-479
[4]   Two Zeolite-Type Frameworks in One Metal-Organic Framework with Zn24@Zn104 Cube-in-Sodalite Architecture [J].
Bu, Fei ;
Lin, Qipu ;
Zhai, Quanguo ;
Wang, Le ;
Wu, Tao ;
Zheng, Shou-Tian ;
Bu, Xianhui ;
Feng, Pingyun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (34) :8538-8541
[5]   Improving photoelectrochemical performance by building Fe2O3 heterostructure on TiO2 nanorod arrays [J].
Cao, Chunlan ;
Hu, Chenguo ;
Shen, Weidong ;
Wang, Shuxia ;
Song, Sihong ;
Wang, Mingjun .
MATERIALS RESEARCH BULLETIN, 2015, 70 :155-162
[6]   Amorphous FeOOH Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting [J].
Chemelewski, William D. ;
Lee, Heung-Chan ;
Lin, Jung-Fu ;
Bard, Allen J. ;
Mullins, C. Buddie .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (07) :2843-2850
[7]   Bifunctional Modification of Graphitic Carbon Nitride with MgFe2O4 for Enhanced Photocatalytic Hydrogen Generation [J].
Chen, Jie ;
Zhao, Daming ;
Diao, Zhidan ;
Wang, Miao ;
Guo, Liejin ;
Shen, Shaohua .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (33) :18843-18848
[8]   Interface Engineering of a CoOx/Ta3N5 Photocatalyst for Unprecedented Water Oxidation Performance under Visible-Light-Irradiation [J].
Chen, Shanshan ;
Shen, Shuai ;
Liu, Guiji ;
Qi, Yu ;
Zhang, Fuxiang ;
Li, Can .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (10) :3047-3051
[9]   Branched ZnO nanostructures as building blocks of photoelectrodes for efficient solar energy conversion [J].
Chen, Wei ;
Qiu, Yongcai ;
Yang, Shihe .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (31) :10872-10881
[10]   Semiconductor-based Photocatalytic Hydrogen Generation [J].
Chen, Xiaobo ;
Shen, Shaohua ;
Guo, Liejin ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6503-6570