Curaua and eucalyptus nanofibers films by continuous casting: Mechanical and thermal properties

被引:26
作者
Cunha Claro, Pedro Ivo [1 ]
Correa, Ana Carolina [2 ]
de Campos, Adriana [2 ]
Rodrigues, Vanessa Bolzan [3 ]
Luchesi, Bruno Ribeiro [1 ]
Silva, Luiz Eduardo [4 ]
Capparelli Mattoso, Luiz Henrique [2 ]
Marconcini, Jose Manoel [2 ]
机构
[1] Univ Fed Sao Carlos, Grad Program Mat Sci & Engn PPG CEM, BR-13565905 Sao Carlos, SP, Brazil
[2] Embrapa Instrumentat, Natl Nanotechnol Lab Agribusiness LNNA, BR-13560970 Sao Carlos, SP, Brazil
[3] Univ Fed Sao Carlos, Dept Chem, BR-13565905 Sao Carlos, SP, Brazil
[4] Univ Fed Lavras, Forest Sci Dept, POB 3037, BR-37200000 Lavras, MG, Brazil
关键词
Curaua; Eucalyptus; Nanofibers films; Thermomechanical properties; Morphological structure; Continuous casting; CELLULOSE NANOCRYSTALS; SULFATE GROUPS; WHEAT-STRAW; FIBERS; COMPOSITES; OXIDATION; BEHAVIOR; PULP;
D O I
10.1016/j.carbpol.2017.11.037
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
A wide variety of new green materials such as curaua leaf fibers (CLFs) has potential applications in nanotechnology. This study aims to investigate the thermomechanical properties and morphological structure of cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) films obtained by continuous casting. The CNCs were obtained by acid hydrolysis and CNFs by mechanical shearing from bleached CLFs and eucalyptus pulp. The morphology after continuous casting resulted in oriented nanofibers, and as a consequence there was mechanical anisotropy. CNCs films showed the greatest values of tensile strength (36 +/- 4 MPa) and the more effective fibrillation provided better mechanical strength of eucalyptus CNFs films than curaua CNFs films. Sulfur groups and mechanical shear degradation affected the stability of CNCs and CNFs films, respectively. Thus, the type of nanostructure, the way they interact to each other, the cellulose source and the process interfere significantly on the properties of the films.
引用
收藏
页码:1093 / 1101
页数:9
相关论文
共 40 条
[1]   Isolation and characterization of nanofibers from agricultural residues - Wheat straw and soy hulls [J].
Alemdar, Ayse ;
Sain, Mohini .
BIORESOURCE TECHNOLOGY, 2008, 99 (06) :1664-1671
[2]  
[Anonymous], 2014, FILMES NANOCELULOSE
[3]  
[Anonymous], THESIS
[4]  
Arvore S. A. B. D., 2016, RELATORIO ANUAL IBA
[5]   Nanocellulose in bio-based food packaging applications [J].
Azeredo, Henriette M. C. ;
Rosa, Morsyleide F. ;
Mattoso, Luiz Henrique C. .
INDUSTRIAL CROPS AND PRODUCTS, 2017, 97 :664-671
[6]   Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time [J].
Benhamou, Karima ;
Dufresne, Alain ;
Magnin, Albert ;
Mortha, Gerard ;
Kaddami, Hamid .
CARBOHYDRATE POLYMERS, 2014, 99 :74-83
[7]   How the chemical nature of Brazilian hardwoods affects nanofibrillation of cellulose fibers and film optical quality [J].
Bufalino, Lina ;
de Sena Neto, Alfredo Rodrigues ;
Denzin Tonoli, Gustavo Henrique ;
Fonseca, Alessandra de Souza ;
Costa, Tattiane Gomes ;
Marconcini, Jose Manoel ;
Colodette, Jorge Luiz ;
Gontijo Labory, Claudia Regina ;
Mendes, Lourival Marin .
CELLULOSE, 2015, 22 (06) :3657-3672
[8]   Preparation of ultrastrength nanopapers using cellulose nanofibrils [J].
Chun, Sang-Jin ;
Lee, Sun-Young ;
Doh, Geum-Hyun ;
Lee, Soo ;
Kim, Jung Hyeun .
JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2011, 17 (03) :521-526
[9]   Cellulose nanofibers from curaua fibers [J].
Correa, Ana Carolina ;
Teixeira, Eliangela de Morais ;
Pessan, Luiz Antonio ;
Capparelli Mattoso, Luiz Henrique .
CELLULOSE, 2010, 17 (06) :1183-1192
[10]   Inverted organic solar cells using nanocellulose as substrate [J].
Costa, Saionara Vilhegas ;
Pingel, Patrick ;
Janietz, Silvia ;
Nogueira, Ana Flavia .
JOURNAL OF APPLIED POLYMER SCIENCE, 2016, 133 (28)