Improvement of Flare Modeling and Derivation for Extreme Ultraviolet Optics

被引:1
|
作者
Shiraishi, Masayuki [1 ]
Oshino, Tetsuya [1 ]
Murakami, Katsuhiko [1 ]
Chiba, Hiroshi [1 ]
机构
[1] Nikon Inc, Kumagaya, Saitama 3608559, Japan
关键词
RANDOM ABERRATION; SCATTERED-LIGHT; EUV; LITHOGRAPHY; IMPACT;
D O I
10.1143/JJAP.50.06GB04
中图分类号
O59 [应用物理学];
学科分类号
摘要
Flare has a critical impact on extreme ultraviolet (EUV) lithography. Precise estimation and control of flare amount are important for optical proximity correction (OPC). Flare can be calculated by the convolution of a reticle pattern with a flare point spread function (PSF) containing total integrated scatter (TIS) and scatter PSF (PSFSC) derived from the power spectral density (PSD) of the mirror surface. TIS is traditionally obtained by the integration of PSFSC. However, a portion of scatter cannot reach the wafer. Hence, TIS should be defined as the total amount of as-scattered light, while PSFSC should be defined as the amount of light reaching the wafer; i.e., TIS should be derived from PSF different from PSFSC. We also had other considerations: the termination of linear approximation, the scatter extinction effect of multilayers, and the obscuration effect. With these considerations, we can calculate flare behaviors that agree well with the experiments. (C) 2011 The Japan Society of Applied Physics
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Modeling carbon contamination of extreme ultraviolet (EUV) optics
    Hollenshead, JT
    Klebanoff, LE
    EMERGING LITHOGRAPHIC TECHNOLOGIES VIII, 2004, 5374 : 675 - 685
  • [2] Nonlinear optics in the extreme ultraviolet
    Taro Sekikawa
    Atsushi Kosuge
    Teruto Kanai
    Shuntaro Watanabe
    Nature, 2004, 432 : 605 - 608
  • [3] Nonlinear optics in the extreme ultraviolet
    Sekikawa, T
    Kosuge, A
    Kanai, T
    Watanabe, S
    NATURE, 2004, 432 (7017) : 605 - 608
  • [4] Assumptions and trade-offs of extreme ultraviolet optics contamination modeling
    Jindal, V.
    Garg, R.
    Denbeaux, G.
    Wueest, A.
    ALTERNATIVE LITHOGRAPHIC TECHNOLOGIES, 2009, 7271
  • [5] Modeling radiation-induced carbon contamination of extreme ultraviolet optics
    Hollenshead, J
    Klebanoff, L
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2006, 24 (01): : 64 - 82
  • [6] Extreme-ultraviolet refractive optics
    Drescher, L.
    Kornilov, O.
    Witting, T.
    Reitsma, G.
    Monserud, N.
    Rouzee, A.
    Mikosch, J.
    Vrakking, M. J. J.
    Schuette, B.
    NATURE, 2018, 564 (7734) : 91 - +
  • [7] Multilayer coatings for optics in the extreme ultraviolet
    Larruquert, Juan I.
    Vidal-Dasilva, Manuela
    Garcia-Cortes, Sergio
    Rodriguez-de Marcos, Luis
    Fernandez-Perea, Monica
    Aznarez, Jose A.
    Mendez, Jose A.
    SEVENTH INTERNATIONAL CONFERENCE ON THIN FILM PHYSICS AND APPLICATIONS, 2011, 7995
  • [8] EXTREME ULTRAVIOLET SPECTROSCOPIC OPTICS IN JAPAN
    UCHIDA, Y
    APPLIED OPTICS, 1964, 3 (07): : 799 - &
  • [9] Extreme-ultraviolet refractive optics
    L. Drescher
    O. Kornilov
    T. Witting
    G. Reitsma
    N. Monserud
    A. Rouzée
    J. Mikosch
    M. J. J. Vrakking
    B. Schütte
    Nature, 2018, 564 : 91 - 94
  • [10] Flare mitigation strategies in extreme ultraviolet lithography
    Kirn, Insung
    Myers, Alan
    Melvin, Lawrence S., III
    Ward, Brian
    Lorusso, Gian Francesco
    Jonckheere, Rik
    Goethals, Anne-Marie
    Ronse, Kurt
    MICROELECTRONIC ENGINEERING, 2008, 85 (5-6) : 738 - 743