Blow-up phenomena for a nonlinear reaction-diffusion system with time dependent coefficients

被引:16
|
作者
Tao, Xueyan [1 ]
Fang, Zhong Bo [2 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Ocean Univ China, Sch Math Sci, Qingdao 266100, Peoples R China
基金
中国国家自然科学基金;
关键词
Reaction-diffusion system; Time dependent coefficient; Bounds for the blow-up time; BOUNDARY-CONDITIONS; PARABOLIC PROBLEMS; EQUATION; MODEL; FLUX;
D O I
10.1016/j.camwa.2017.07.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the blow-up phenomena for the solution to a nonlinear reaction-diffusion system with time dependent coefficients subject to null Dirichlet boundary conditions. By virtue of Kaplan's method, method of subsolutions and supersolutions and modified differential inequality technique, we establish the blow-up criteria for the solution. Moreover, lower and upper bounds for the blow-up time are derived. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2520 / 2528
页数:9
相关论文
共 50 条
  • [41] Blow-up rate estimates for a system of reaction-diffusion equations with absorption
    Xiang, Zhaoyin
    Chen, Qiong
    Mu, Chunlai
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (04) : 779 - 786
  • [42] Blow-up rate estimates for a doubly coupled reaction-diffusion system
    Zheng, SN
    Liu, BC
    Li, FJ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 312 (02) : 576 - 595
  • [43] Blow-up solutions to the Cauchy problem of a fractional reaction-diffusion system
    Ezi Wu
    Yanbin Tang
    Journal of Inequalities and Applications, 2015
  • [44] SINGLE-POINT BLOW-UP FOR A SEMILINEAR REACTION-DIFFUSION SYSTEM
    Mahmoudi, Nejib
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2014, 6 (04): : 563 - 591
  • [45] Global existence and blow-up of solutions to a nonlocal reaction-diffusion system
    Li, FC
    Huang, SX
    Xie, CH
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, 9 (06) : 1519 - 1532
  • [46] Blow-up estimates for a quasi-linear reaction-diffusion system
    Yang, ZD
    Lu, QS
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2003, 26 (12) : 1005 - 1023
  • [47] Note on non-simultaneous blow-up for a reaction-diffusion system
    Du, Lili
    Yao, Zheng-an
    APPLIED MATHEMATICS LETTERS, 2008, 21 (01) : 81 - 85
  • [48] Blow-up solutions to the Cauchy problem of a fractional reaction-diffusion system
    Wu, Ezi
    Tang, Yanbin
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [49] Localization on the boundary of blow-up for reaction-diffusion equations with nonlinear boundary conditions
    Arrieta, JM
    Rodríguez-Bernal, A
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (7-8) : 1127 - 1148
  • [50] Blow-up analyses in reaction-diffusion equations with nonlinear nonlocal boundary flux
    Liu, Bingchen
    Lin, Hongyan
    Li, Fengjie
    Wang, Xiangyu
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (04):