Blow-up phenomena for a nonlinear reaction-diffusion system with time dependent coefficients

被引:16
|
作者
Tao, Xueyan [1 ]
Fang, Zhong Bo [2 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Ocean Univ China, Sch Math Sci, Qingdao 266100, Peoples R China
基金
中国国家自然科学基金;
关键词
Reaction-diffusion system; Time dependent coefficient; Bounds for the blow-up time; BOUNDARY-CONDITIONS; PARABOLIC PROBLEMS; EQUATION; MODEL; FLUX;
D O I
10.1016/j.camwa.2017.07.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the blow-up phenomena for the solution to a nonlinear reaction-diffusion system with time dependent coefficients subject to null Dirichlet boundary conditions. By virtue of Kaplan's method, method of subsolutions and supersolutions and modified differential inequality technique, we establish the blow-up criteria for the solution. Moreover, lower and upper bounds for the blow-up time are derived. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2520 / 2528
页数:9
相关论文
共 50 条
  • [31] Non-simultaneous blow-up of a reaction-diffusion system with inner absorption and coupled via nonlinear boundary flux
    Xu, Si
    BOUNDARY VALUE PROBLEMS, 2015, : 1 - 11
  • [32] Non-simultaneous blow-up of a reaction-diffusion system with inner absorption and coupled via nonlinear boundary flux
    Si Xu
    Boundary Value Problems, 2015
  • [33] Blow-up phenomena for a system of semilinear parabolic equations with nonlinear boundary conditions
    Baghaei, Khadijeh
    Hesaaraki, Mahmoud
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (03) : 527 - 536
  • [34] Blow-Up Solutions and Global Existence for a Kind of Quasilinear Reaction-Diffusion Equations
    Zhang, Lingling
    Zhang, Na
    Li, Lixiang
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2014, 33 (03): : 247 - 258
  • [35] Blow-up phenomena for some nonlinear parabolic problems
    Payne, L. E.
    Philippin, G. A.
    Schaefer, P. W.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (10) : 3495 - 3502
  • [36] Asymptotic properties of blow-up solutions in reaction-diffusion equations with nonlocal boundary flux
    Liu, Bingchen
    Dong, Mengzhen
    Li, Fengjie
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (02):
  • [37] Global existence and blow-up solutions for quasilinear reaction-diffusion equations with a gradient term
    Ding, Juntang
    Guo, Bao-Zhu
    APPLIED MATHEMATICS LETTERS, 2011, 24 (06) : 936 - 942
  • [38] BLOW UP AND LIFE SPAN ESTIMATES FOR A CLASS OF NONLINEAR DEGENERATE PARABOLIC SYSTEM WITH TIME DEPENDENT COEFFICIENTS
    Xia, Anyin
    Fan, Mingshu
    Li, Shan
    ACTA MATHEMATICA SCIENTIA, 2017, 37 (04) : 974 - 984
  • [39] The Profile of Blow-Up for a Neumann Problem of Nonlocal Nonlinear Diffusion Equation with Reaction
    Wang, Rong-Nian
    Liu, Zhi-Xue
    Zhou, Yong
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2016, 35 (02): : 173 - 180
  • [40] Blow-up and global existence for the non-local reaction diffusion problem with time dependent coefficient
    Ahmed, Iftikhar
    Mu, Chunlai
    Zheng, Pan
    Zhang, Fuchen
    BOUNDARY VALUE PROBLEMS, 2013,