Synergistic use of Landsat 8 OLI image and airborne LiDAR data for above-ground biomass estimation in tropical lowland rainforests

被引:31
作者
Phua, Mui-How [1 ]
Johari, Shazrul Azwan [1 ]
Wong, Ong Cieh [1 ]
Ioki, Keiko [1 ]
Mahali, Maznah [1 ]
Nilus, Reuben [2 ]
Coomes, David A. [3 ]
Maycock, Colin R. [1 ]
Hashim, Mazlan [4 ]
机构
[1] Univ Malaysia Sabah, Forestry Complex, Fac Sci & Nat Resources, Sabah, Malaysia
[2] Sabah Forestry Dept, Forest Res Ctr, POB 1407, Sandakan 90715, Sabah, Malaysia
[3] Univ Cambridge, Dept Plant Sci, Downing St, Cambridge CB2 3EA, England
[4] Univ Teknol Malaysia, Res Inst Sustainable Environm, Skudai 91310, Johor Bahru, Malaysia
关键词
Tropical forest; Above-ground biomass; Landsat; 8; OLI; Airborne LiDAR; Borneo; REDD; REMOTE-SENSING DATA; TREE COMMUNITY COMPOSITION; LEAF-AREA INDEX; TM DATA; VEGETATION INDEXES; BRAZILIAN AMAZON; WOOD DENSITY; TANDEM-X; CARBON; TEXTURE;
D O I
10.1016/j.foreco.2017.10.007
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Developing a robust and cost-effective method for accurately estimating tropical forest's carbon pool over large area is a fundamental requirement for the implementation of Reducing Emissions from Deforestation and forest Degradation (REDD +). This study aims at examining the independent and combined use of airborne LiDAR and Landsat 8 Operational Land Imager (OLI) data to accurately estimate the above-ground biomass (AGB) of primary tropical rainforests in Sabah, Malaysia. Thirty field plots were established in three types of lowland rainforests: alluvial, sandstone hill and heath forests that represent a wide range of AGB density and stand structure. We derived the height percentile and laser penetration variables from the airborne LiDAR and calculated the vegetation indices, tasseled cap transformation values, and the texture measures from Landsat 8 OLI data. We found that there are moderate correlations between the AGB and laser penetration variables from airborne LiDAR data (r = -0.411 to -0.790). For Landsat 8 OLI data, the 6 vegetation indices and the 46 texture measures also significantly correlated with the AGB (r = 0.366-0.519). Stepwise multiple regression analysis was performed to establish the estimation models for independent and combined use of airborne LiDAR and Landsat 8 OLI data. The results showed that the model based on a combination of the two remote sensing data achieved the highest accuracy (R-adj(2) = 0.81, RMSE = 17.36%) whereas the models using Landsat 8 OLI data airborne LiDAR data independently obtained the moderate accuracy (R-adj(2) = 0.52, RMSE = 24.22% and R-adj(2) = 0.63, RMSE = 25.25%, respectively). Our study indicated that texture measures from Landsat 8 OLI data provided useful information for AGB estimation and synergistic use of Landsat 8 OLI and airborne LiDAR data could improve the AGB estimation of primary tropical rainforest.
引用
收藏
页码:163 / 171
页数:9
相关论文
共 50 条
  • [41] Above-ground biomass estimation in a Mediterranean sparse coppice oak forest using Sentinel-2 data
    Moradi, Fardin
    Sadeghi, Seyed Mohamad Moein
    Heidarlou, Hadi Beygi
    Deljouei, Azade
    Boshkar, Erfan
    Borz, Stelian Alexandru
    ANNALS OF FOREST RESEARCH, 2022, 65 (01) : 165 - 182
  • [42] Evaluation of multifrequency SAR data for estimating tropical above-ground biomass by employing radiative transfer modeling
    Sainuddin, Faseela V.
    Chirakkal, Sanid
    Asok, Smitha V.
    Das, Anup Kumar
    Putrevu, Deepak
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2023, 195 (09)
  • [43] Species dominance and above ground biomass in the Bialowieza Forest, Poland, described by airborne hyperspectral and lidar data
    Laurin, Gaia Vaglio
    Puletti, Nicola
    Grotti, Mirko
    Sterenczak, Krzysztof
    Modzelewska, Aneta
    Lisiewicz, Maciej
    Sadkowski, Rafal
    Kuberski, Lukasz
    Chirici, Gherardo
    Papale, Dario
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2020, 92
  • [44] Non-destructive above ground biomass estimation of individual tree species using airborne LiDAR data for combating global warming
    Bas, Nuray
    Gursoy, Onder
    Turk, Tarik
    Atun, Rutkay
    Koc, Kenan
    INTERNATIONAL JOURNAL OF GLOBAL WARMING, 2022, 27 (04) : 422 - 440
  • [45] Above-ground biomass estimation in ten tropical dry evergreen forest sites of peninsular India
    Mani, S.
    Parthasarathy, N.
    BIOMASS & BIOENERGY, 2007, 31 (05) : 284 - 290
  • [46] Estimating Above-Ground Biomass of Araucaria angustifolia (Bertol.) Kuntze Using LiDAR Data
    Rex, Franciel Eduardo
    Dalla Corte, Ana Paula
    Machado, Sebastiao do Amaral
    Silvan, Carlos Alberto
    Sanquetta, Carlos Roberto
    FLORESTA E AMBIENTE, 2019, 26 (04):
  • [47] Stacked Sparse Autoencoder Modeling Using the Synergy of Airborne LiDAR and Satellite Optical and SAR Data to Map Forest Above-Ground Biomass
    Shao, Zhenfeng
    Zhang, Linjing
    Wang, Lei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (12) : 5569 - 5582
  • [48] Estimation of Above-Ground Mangrove Biomass Using Landsat-8 Data- Derived Vegetation Indices: A Case Study in Quang Ninh Province, Vietnam
    Hai-Hoa Nguyen
    Huy Duc Vu
    Roeder, Achim
    FOREST AND SOCIETY, 2021, 5 (02) : 506 - 525
  • [49] Estimating Above-Ground Biomass in Sub-Tropical Buffer Zone Community Forests, Nepal, Using Sentinel 2 Data
    Pandit, Santa
    Tsuyuki, Satoshi
    Dube, Timothy
    REMOTE SENSING, 2018, 10 (04)
  • [50] COMPONENT FOREST ABOVE GROUND BIOMASS ESTIMATION USING LIDAR AND SAR DATA
    Zeng, Peng
    Shi, Jianmin
    Huang, Jimao
    Zhang, Yongxin
    Zhang, Wangfei
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 6395 - 6398