The Effectiveness of a Deep Learning Model to Detect Left Ventricular Systolic Dysfunction from Electrocardiograms

被引:17
作者
Katsushika, Susumu [1 ]
Kodera, Satoshi [1 ]
Nakamoto, Mitsuhiko [1 ]
Ninomiya, Kota [1 ]
Inoue, Shunsuke [1 ]
Sawano, Shinnosuke [1 ]
Kakuda, Nobutaka [1 ]
Takiguchi, Hiroshi [1 ]
Shinohara, Hiroki [1 ]
Matsuoka, Ryo [1 ]
Ieki, Hirotaka [1 ]
Higashikuni, Yasutomi [1 ]
Nakanishi, Koki [1 ]
Nakao, Tomoko [1 ,2 ]
Seki, Tomohisa [3 ]
Takeda, Norifumi [1 ]
Fujiu, Katsuhito [1 ,4 ]
Daimon, Masao [1 ,2 ]
Akazawa, Hiroshi [1 ]
Morita, Hiroyuki [1 ]
Komuro, Issei [1 ]
机构
[1] Univ Tokyo, Dept Cardiovasc Med, Tokyo, Japan
[2] Univ Tokyo, Dept Clin Lab, Tokyo, Japan
[3] Univ Tokyo, Univ Tokyo Hosp, Dept Healthcare Informat Management, Tokyo, Japan
[4] Univ Tokyo, Dept Adv Cardiol, Tokyo, Japan
关键词
Echocardiography; Artificial intelligence; MYOCARDIAL-INFARCTION; ARTIFICIAL-INTELLIGENCE; ASSOCIATION; SOCIETY;
D O I
10.1536/ihj.21-407
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Deep learning models can be applied to electrocardiograms (ECGs) to detect left ventricular (LV) dysfunc-tion. We hypothesized that applying a deep learning model may improve the diagnostic accuracy of cardiolo-gists in predicting LV dysfunction from ECGs. We acquired 37,103 paired ECG and echocardiography data re-cords of patients who underwent echocardiography between January 2015 and December 2019. We trained a convolutional neural network to identify the data records of patients with LV dysfunction (ejection fraction < 40%) using a dataset of 23,801 ECGs. When tested on an independent set of 7,196 ECGs, we found the area under the receiver operating characteristic curve was 0.945 (95% confidence interval: 0.936-0.954). When 7 car-diologists interpreted 50 randomly selected ECGs from the test dataset of 7,196 ECGs, their accuracy for pre-dicting LV dysfunction was 78.0% +/- 6.0%. By referring to the model's output, the cardiologist accuracy im -proved to 88.0% +/- 3.7%, which indicates that model support significantly improved the cardiologist diagnostic accuracy (P = 0.02). A sensitivity map demonstrated that the model focused on the QRS complex when detect-ing LV dysfunction on ECGs. We developed a deep learning model that can detect LV dysfunction on ECGs with high accuracy. Furthermore, we demonstrated that support from a deep learning model can help cardiolo-gists to identify LV dysfunction on ECGs.
引用
收藏
页码:1332 / 1341
页数:10
相关论文
共 33 条
[1]  
[Anonymous], 2015, ACS SYM SER
[2]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867
[3]   Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Lopez-Jimenez, Francisco ;
McKie, Paul M. ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Enriquez-Sarano, Maurice ;
Noseworthy, Peter A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Friedman, Paul A. .
NATURE MEDICINE, 2019, 25 (01) :70-+
[4]   Strengths and Opportunities of Network Medicine in Cardiovascular Diseases [J].
Benincasa, Giuditta ;
Marfella, Raffaele ;
Della Mura, Nunzia ;
Schiano, Concetta ;
Napoli, Claudio .
CIRCULATION JOURNAL, 2020, 84 (02) :144-152
[5]   Heart failure with reduced ejection fraction [J].
Bloom, Michelle W. ;
Greenberg, Barry ;
Jaarsma, Tiny ;
Januzzi, James L. ;
Lam, Carolyn S. P. ;
Maggioni, Aldo P. ;
Trochu, Jean-Noel ;
Butler, Javed .
NATURE REVIEWS DISEASE PRIMERS, 2017, 3
[6]  
Carpenter J, 2000, STAT MED, V19, P1141, DOI 10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO
[7]  
2-F
[8]   Deep Learning in Medical Image Analysis [J].
Chan, Heang-Ping ;
Samala, Ravi K. ;
Hadjiiski, Lubomir M. ;
Zhou, Chuan .
DEEP LEARNING IN MEDICAL IMAGE ANALYSIS: CHALLENGES AND APPLICATIONS, 2020, 1213 :3-21
[9]   Metoprolol reverses left ventricular remodeling in patients with asymptomatic systolic dysfunction - The Reversal of ventricular remodeling with Toprol-XL (REVERT) trial [J].
Colucci, Wilson S. ;
Kolias, Theodore J. ;
Adams, Kirkwood F. ;
Armstrong, William F. ;
Ghali, Jalal K. ;
Gottlieb, Stephen S. ;
Greenberg, Barry ;
Klibaner, Michael I. ;
Kukin, Marrick L. ;
Sugg, Jennifer E. .
CIRCULATION, 2007, 116 (01) :49-56
[10]   Effect of carvedilol on outcome after myocardial infarction in patients with left-ventricular dysfunction: the CAPRICORN randomised trial [J].
Dargie, HJ ;
Colucci, Y ;
Ford, I ;
Sendon, JLL ;
Remme, W ;
Sharpe, N ;
Blank, A ;
Holcslaw, TL .
LANCET, 2001, 357 (9266) :1385-1390