Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling

被引:264
作者
Chen, Yijun [1 ,2 ]
Mandal, Jyotirmoy [1 ]
Li, Wenxi [3 ]
Smith-Washington, Ajani [4 ]
Tsai, Cheng-Chia [1 ]
Huang, Wenlong [1 ]
Shrestha, Sajan [1 ]
Yu, Nanfang [1 ]
Han, Ray P. S. [2 ]
Cao, Anyuan [2 ]
Yang, Yuan [1 ]
机构
[1] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[2] Peking Univ, Coll Engn, Dept Mat Sci & Engn, Beijing 100871, Peoples R China
[3] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA
[4] Howard Univ, Dept Phys & Astron, Coll Arts & Sci, Washington, DC 20059 USA
关键词
SPECTRAL OPTICAL-PROPERTIES; COATED FLAKES; PIGMENTS; PERFORMANCE;
D O I
10.1126/sciadv.aaz5413
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Solar reflective and thermally emissive surfaces offer a sustainable way to cool objects under sunlight. However, white or silvery reflectance of these surfaces does not satisfy the need for color. Here, we present a paintable bilayer coating that simultaneously achieves color and radiative cooling. The bilayer comprises a thin, visibleabsorptive layer atop a nonabsorptive, solar-scattering underlayer. The top layer absorbs appropriate visible wavelengths to show specific colors, while the underlayer maximizes the reflection of near-to-short wavelength infrared (NSWIR) light to reduce solar heating. Consequently, the bilayer attains higher NSWIR reflectance (by 0.1 to 0.51) compared with commercial paint monolayers of the same color and stays cooler by as much as 3.0 degrees to 15.6 degrees C under strong sunlight. High NSWIR reflectance of 0.89 is realized in the blue bilayer. The performances show that the bilayer paint design can achieve both color and efficient radiative cooling in a simple, inexpensive, and scalable manner.
引用
收藏
页数:8
相关论文
共 44 条
  • [11] Artificial chameleon skin that controls spectral radiation: Development of Chameleon Cool Coating (C3)
    Gonome, Hiroki
    Nakamura, Masashi
    Okajima, Junnosuke
    Maruyama, Shigenao
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [12] SURFACES FOR RADIATIVE COOLING - SILICON MONOXIDE FILMS ON ALUMINUM
    GRANQVIST, CG
    HJORTSBERG, A
    [J]. APPLIED PHYSICS LETTERS, 1980, 36 (02) : 139 - 141
  • [13] Solar energy materials for thermal applications: A primer
    Granqvist, Claes G.
    Niklasson, Gunnar A.
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 180 : 213 - 226
  • [14] Radiative Cooling: Principles, Progress, and Potentials
    Hossain, Md. Muntasir
    Gu, Min
    [J]. ADVANCED SCIENCE, 2016, 3 (07):
  • [15] Karttunen H., 2016, Fundamental astronomy
  • [16] Daytime Radiative Cooling Using Near-Black Infrared Emitters
    Kou, Jun-Long
    Jurado, Zoila
    Chen, Zhen
    Fan, Shanhui
    Minnich, Austin J.
    [J]. ACS PHOTONICS, 2017, 4 (03): : 626 - 630
  • [17] Lee G. J., 2018, ADV OPT MAT, V6, P22
  • [18] Solar spectral optical properties of pigments - Part I: model for deriving scattering and absorption coefficients from transmittance and reflectance measurements
    Levinson, R
    Berdahl, P
    Akbari, H
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2005, 89 (04) : 319 - 349
  • [19] Solar spectral optical properties of pigments - Part II: survey of common colorants
    Levinson, R
    Berdahl, P
    Akbari, H
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2005, 89 (04) : 351 - 389
  • [20] A radiative cooling structural material
    Li, Tian
    Zhai, Yao
    He, Shuaiming
    Gan, Wentao
    Wei, Zhiyuan
    Heidarinejad, Mohammad
    Dalgo, Daniel
    Mi, Ruiyu
    Zhao, Xinpeng
    Song, Jianwei
    Dai, Jiaqi
    Chen, Chaoji
    Aili, Ablimit
    Vellore, Azhar
    Martini, Ashlie
    Yang, Ronggui
    Srebric, Jelena
    Yin, Xiaobo
    Hu, Liangbing
    [J]. SCIENCE, 2019, 364 (6442) : 760 - +