A Study on Computational Algorithms in the Estimation of Parameters for a Class of Beta Regression Models

被引:7
|
作者
Couri, Lucas [1 ]
Ospina, Raydonal [1 ]
da Silva, Geiza [1 ]
Leiva, Victor [2 ]
Figueroa-Zuniga, Jorge [3 ]
机构
[1] Univ Fed Pernambuco, Dept Stat, CASTLab, BR-50670901 Recife, PE, Brazil
[2] Pontificia Univ Catolica Valparaiso, Sch Ind Engn, Valparaiso 2362807, Chile
[3] Univ Concepcion, Dept Stat, Concepcion 4070386, Chile
关键词
computational statistics; heuristic; likelihood function; Monte Carlo method; R software; GLOBAL OPTIMIZATION; INTELLIGENCE; DIAGNOSTICS; PACKAGE;
D O I
10.3390/math10030299
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Beta regressions describe the relationship between a response that assumes values in the zero-one range and covariates. These regressions are used for modeling rates, ratios, and proportions. We study computational aspects related to parameter estimation of a class of beta regressions for the mean with fixed precision by maximizing the log-likelihood function with heuristics and other optimization methods. Through Monte Carlo simulations, we analyze the behavior of ten algorithms, where four of them present satisfactory results. These are the differential evolutionary, simulated annealing, stochastic ranking evolutionary, and controlled random search algorithms, with the latter one having the best performance. Using the four algorithms and the optim function of R, we study sets of parameters that are hard to be estimated. We detect that this function fails in most cases, but when it is successful, it is more accurate and faster than the others. The annealing algorithm obtains satisfactory estimates in viable time with few failures so that we recommend its use when the optim function fails.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Estimation of regression parameters and the hazard function in transformed linear survival models
    Gray, RJ
    BIOMETRICS, 2000, 56 (02) : 571 - 576
  • [42] ESTIMATION OF PARAMETERS IN MODELS FOR TRAFFIC PREDICTION - NONLINEAR-REGRESSION APPROACH
    HOGBERG, P
    TRANSPORTATION RESEARCH, 1976, 10 (04): : 263 - 265
  • [43] Comparison of random regression models for the estimation of genetic parameters in dairy goats
    Rocha Sarmento, Jose Lindenberg
    de Albuquerque, Lucia Galvao
    Torres, Robledo de Almeida
    Rodrigues, Marcelo Teixeira
    Lopes, Paulo Savio
    Reis Filho, Joao Cruz
    REVISTA BRASILEIRA DE ZOOTECNIA-BRAZILIAN JOURNAL OF ANIMAL SCIENCE, 2008, 37 (10): : 1788 - 1796
  • [44] ALGORITHMS AND APPLICATIONS OF NONLINEAR PARAMETER-ESTIMATION OF ORTHOGONAL REGRESSION-MODELS
    ELMOURSI, AKM
    GFRERER, H
    ADVANCES IN ENGINEERING SOFTWARE, 1994, 21 (02) : 75 - 85
  • [45] Algorithms for a class of isotonic regression problems
    Pardalos, PM
    Xue, G
    ALGORITHMICA, 1999, 23 (03) : 211 - 222
  • [46] Algorithms for a Class of Isotonic Regression Problems
    P. M. Pardalos
    G. Xue
    Algorithmica, 1999, 23 : 211 - 222
  • [47] CLASS OF RECURSIVE SEQUENTIAL REGRESSION ALGORITHMS
    MURALI, T
    RAO, BV
    ELECTRONICS LETTERS, 1984, 20 (21) : 852 - 854
  • [48] Estimation of parameters of kinetic compartmental models by use of computational neural networks
    Ventura, S
    Silva, M
    PerezBendito, D
    Hervas, C
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1997, 37 (03): : 517 - 521
  • [49] MODELS AND ALGORITHMS OF ESTIMATION OF THE KINEMATIC PARAMETERS OF THE OBJECT MOVEMENT BY ITS POSITIONING
    Devyatisilny, Aleksandr S.
    Grinyak, Viktor M.
    Shurygin, Artem V.
    MARINE INTELLECTUAL TECHNOLOGIES, 2018, 2 (02): : 175 - 180
  • [50] An analysis on the performance of metaheuristic algorithms for the estimation of parameters in solar cell models
    Navarro, Mario A.
    Oliva, Diego
    Ramos-Michel, Alfonso
    Haro, Eduardo H.
    ENERGY CONVERSION AND MANAGEMENT, 2023, 276