Query expansion using Haar wavelet transform

被引:0
作者
Shukla, Abhishek Kumar [1 ]
Das, Sujoy [1 ]
机构
[1] Maulana Azad Natl Inst Technol, Bhopal, India
关键词
Haar wavelet; Hilbert space; information retrieval; query expansion; term signal; wavelet transform; RETRIEVAL;
D O I
10.1177/01655515221111005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Novice users are unable to express their information needs properly, due to this it is difficult to retrieve all the desired relevant documents from the test collection. The problem of word mismatch is fundamental to information retrieval. Query expansion is a technique in which additional terms are added to retrieve relevant documents. In this article, we have expanded the query using pseudo-relevance feedback and Haar wavelet transform. The performance of the proposed technique is evaluated on FIRE 2011 ad hoc English test Collection and Robust dataset. The mean average precision of the proposed model on the FIRE dataset and Robust Track dataset is 0.3334 and 0.2724, respectively.
引用
收藏
页码:991 / 1004
页数:14
相关论文
共 43 条
[1]   A theory of concepts and their combinations - II - A Hilbert space and representation [J].
Aerts, D ;
Gabora, L .
KYBERNETES, 2005, 34 (1-2) :192-221
[2]  
ALMasri Mohannad, 2016, Advances in Information Retrieval. 38th European Conference on IR Research, ECIR 2016. Proceedings
[3]  
LNCS 9626, P709, DOI 10.1007/978-3-319-30671-1_57
[4]  
Alnofaie S, 2016, INT J ADV COMPUT SC, V7, P364
[5]   WAVELET-LIKE BASES FOR THE FAST SOLUTION OF 2ND-KIND INTEGRAL-EQUATIONS [J].
ALPERT, B ;
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (01) :159-184
[6]  
Amati G, 2003, THESIS U GLASGOW GLA
[7]  
[Anonymous], 2007, ASS COMPUTATIONAL LI
[8]   A review of ontology based query expansion [J].
Bhogal, J. ;
Macfarlane, A. ;
Smith, P. .
INFORMATION PROCESSING & MANAGEMENT, 2007, 43 (04) :866-886
[9]   Latent Dirichlet allocation [J].
Blei, DM ;
Ng, AY ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) :993-1022
[10]  
Bracewell Ronald Newbold, 1986, The Fourier transform and its applications, V1999