Diophantine equations for second-order recursive sequences of polynomials

被引:22
作者
Dujella, A [1 ]
Tichy, RF
机构
[1] Univ Zagreb, Dept Math, Bijenicka Cesta 30, Zagreb 10000, Croatia
[2] Graz Univ Technol, Inst Math, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
D O I
10.1093/qjmath/52.2.161
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let B be a non-zero integer. Define the sequence of polynomials G(n)(x) by G(0)(x) = 0, G(1)(x) = 1, G(n+1)(x) = (x)G(n)(x) + BG(n-1)(x), n epsilon N. We prove that the diophantine equation G(m)(x) = G(n)(y) for m, n greater than or equal to 3, m not equal n, has only finitely many solutions.
引用
收藏
页码:161 / 169
页数:9
相关论文
共 13 条