Spatial-temporal Structures of Deep Learning Models for Traffic Flow Forecasting: A Survey

被引:7
|
作者
Luo, Qingsong [1 ,2 ]
Zhou, Yimin [1 ,2 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, 1068 Xueyuan Ave, Shenzhen 518055, Peoples R China
[2] Univ Chinese Acad Sci, 19 Yuquan Rd, Beijing 100049, Peoples R China
来源
2021 4TH INTERNATIONAL CONFERENCE ON INTELLIGENT AUTONOMOUS SYSTEMS (ICOIAS 2021) | 2021年
关键词
Traffic Flow Forecasting; Spatial-temporal dependency; Deep learning; CONVOLUTIONAL NEURAL-NETWORKS; PREDICTION; DEMAND; SYSTEM; SPEEDS; VOLUME;
D O I
10.1109/ICoIAS53694.2021.00041
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic forecasting is important for the success of intelligent transportation systems. In recent years, deep learning methods, such as convolution neural networks, recurrent neural networks and graph neural networks are introduced to model the spatial and temporal dependencies of the traffic data and have achieved state-of-the-art performance. In this survey, the traffic flow forecasting models based on deep learning are summarized from the perspective of spatial and temporal structure design. Specifically, the existing models can be divided into combinatorial and integrative structures, where the spatial and temporal submodules are considered stepwise with the combinatorial mode but considered comprehensively as a whole with the integrative mode. The functions and structures of each submodule are described and summarized in detail, and the combined mode of the submodules is analyzed as well. On the other hand, the integrative pattern is discussed with two model design paradigms. Furthermore, this paper summarizes the open data sets and source code of the surveyed papers to help upcoming researchers. Finally, the challenges and prospect research directions are discussed thoroughly so as to inspire for more accurate and efficient models development.
引用
收藏
页码:187 / 193
页数:7
相关论文
共 50 条
  • [41] Dynamic Spatial-Temporal Perception Graph Convolutional Networks for Traffic Flow Forecasting
    Cao, Jingsi
    Liu, Weibin
    Xing, Weiwei
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT II, 2025, 15032 : 347 - 360
  • [42] Multi-Step Spatial-Temporal Fusion Network for Traffic Flow Forecasting
    Dong, Honghui
    Meng, Ziying
    Wang, Yiming
    Jia, Limin
    Qin, Yong
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 3412 - 3419
  • [43] A traffic flow forecasting method based on hybrid spatial-temporal gated convolution
    Zhang, Ying
    Yang, Songhao
    Wang, Hongchao
    Cheng, Yongqiang
    Wang, Jinyu
    Cao, Liping
    An, Ziying
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2025, 16 (03) : 1805 - 1817
  • [44] A multi-channel spatial-temporal transformer model for traffic flow forecasting
    Xiao, Jianli
    Long, Baichao
    INFORMATION SCIENCES, 2024, 671
  • [45] Spatial-temporal hypergraph convolutional network for traffic forecasting
    Zhao, Zhenzhen
    Shen, Guojiang
    Zhou, Junjie
    Jin, Junchen
    Kong, Xiangjie
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [46] An efficient spatial-temporal transformer with temporal aggregation and spatial memory for traffic forecasting
    Liu, Aoyu
    Zhang, Yaying
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 250
  • [47] Learning continuous spatial-temporal evolution via dynamic graph neural differential equations for traffic flow forecasting
    Shi, Hongli
    Zhang, Wensheng
    INFORMATION SCIENCES, 2025, 700
  • [48] Deep learning-powered vessel traffic flow prediction with spatial-temporal attributes and similarity grouping
    Li, Yan
    Liang, Maohan
    Li, Huanhuan
    Yang, Zaili
    Du, Liang
    Chen, Zhongshuo
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [49] Spatial-Temporal Transformer Networks for Traffic Flow Forecasting Using a Pre-Trained Language Model
    Ma, Ju
    Zhao, Juan
    Hou, Yao
    SENSORS, 2024, 24 (17)
  • [50] Multi-component Spatial-temporal Graph Convolution Networks for Traffic Flow Forecasting
    Feng N.
    Guo S.-N.
    Song C.
    Zhu Q.-C.
    Wan H.-Y.
    Ruan Jian Xue Bao/Journal of Software, 2019, 30 (03): : 759 - 769