Spatial-temporal Structures of Deep Learning Models for Traffic Flow Forecasting: A Survey

被引:7
|
作者
Luo, Qingsong [1 ,2 ]
Zhou, Yimin [1 ,2 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, 1068 Xueyuan Ave, Shenzhen 518055, Peoples R China
[2] Univ Chinese Acad Sci, 19 Yuquan Rd, Beijing 100049, Peoples R China
关键词
Traffic Flow Forecasting; Spatial-temporal dependency; Deep learning; CONVOLUTIONAL NEURAL-NETWORKS; PREDICTION; DEMAND; SYSTEM; SPEEDS; VOLUME;
D O I
10.1109/ICoIAS53694.2021.00041
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic forecasting is important for the success of intelligent transportation systems. In recent years, deep learning methods, such as convolution neural networks, recurrent neural networks and graph neural networks are introduced to model the spatial and temporal dependencies of the traffic data and have achieved state-of-the-art performance. In this survey, the traffic flow forecasting models based on deep learning are summarized from the perspective of spatial and temporal structure design. Specifically, the existing models can be divided into combinatorial and integrative structures, where the spatial and temporal submodules are considered stepwise with the combinatorial mode but considered comprehensively as a whole with the integrative mode. The functions and structures of each submodule are described and summarized in detail, and the combined mode of the submodules is analyzed as well. On the other hand, the integrative pattern is discussed with two model design paradigms. Furthermore, this paper summarizes the open data sets and source code of the surveyed papers to help upcoming researchers. Finally, the challenges and prospect research directions are discussed thoroughly so as to inspire for more accurate and efficient models development.
引用
收藏
页码:187 / 193
页数:7
相关论文
共 50 条
  • [21] Transformer network with decoupled spatial-temporal embedding for traffic flow forecasting
    Sun, Wei
    Cheng, Rongzhang
    Jiao, Yingqi
    Gao, Junbo
    Zheng, Zhedian
    Lu, Nan
    APPLIED INTELLIGENCE, 2023, 53 (24) : 30148 - 30168
  • [22] Adaptive spatial-temporal graph attention networks for traffic flow forecasting
    Kong, Xiangyuan
    Zhang, Jian
    Wei, Xiang
    Xing, Weiwei
    Lu, Wei
    APPLIED INTELLIGENCE, 2022, 52 (04) : 4300 - 4316
  • [23] STGAT: Spatial-Temporal Graph Attention Networks for Traffic Flow Forecasting
    Kong, Xiangyuan
    Xing, Weiwei
    Wei, Xiang
    Bao, Peng
    Zhang, Jian
    Lu, Wei
    IEEE ACCESS, 2020, 8 : 134363 - 134372
  • [24] Spatial-temporal feature variational inference model for traffic flow forecasting
    Ouyang, Yi
    Tang, Wen-Yan
    Shao, Yong-Bo
    Li, Yan-Ling
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2025, 42 (01): : 158 - 166
  • [25] Decoupled Graph Spatial-Temporal Transformer Networks for traffic flow forecasting
    Sun, Wei
    Cheng, Rongzhang
    Jiao, Yingqi
    Gao, Junbo
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 148
  • [26] Adaptive spatial-temporal graph attention networks for traffic flow forecasting
    Xiangyuan Kong
    Jian Zhang
    Xiang Wei
    Weiwei Xing
    Wei Lu
    Applied Intelligence, 2022, 52 : 4300 - 4316
  • [27] Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow Forecasting
    Li, Mengzhang
    Zhu, Zhanxing
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 4189 - 4196
  • [28] Bidirectional Spatial-Temporal Adaptive Transformer for Urban Traffic Flow Forecasting
    Chen, Changlu
    Liu, Yanbin
    Chen, Ling
    Zhang, Chengqi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (10) : 6913 - 6925
  • [29] Orthogonal Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting
    Fei, Yanhong
    Hu, Ming
    Wei, Xian
    Chen, Mingsong
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 71 - 76
  • [30] Efficient Adaptive Spatial-Temporal Attention Network for Traffic Flow Forecasting
    Su, Hongyang
    Wang, Xiaolong
    Chen, Qingcai
    Qin, Yang
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT V, 2023, 14173 : 205 - 220