A Modified Newton Method for Multilinear PageRank

被引:8
|
作者
Guo, Pei-Chang [1 ]
Gao, Shi-Chen [1 ]
Guo, Xiao-Xia [2 ]
机构
[1] China Univ Geosci, Sch Sci, Beijing 100083, Peoples R China
[2] Ocean Univ China, Sch Math Sci, Qingdao 266100, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2018年 / 22卷 / 05期
关键词
multilinear PageRank; tensor; Newton-like method; monotone convergence; QUADRATIC VECTOR EQUATION; MARKOVIAN BINARY-TREES; SHAMANSKII METHOD; CONVERGENCE;
D O I
10.11650/tjm/180303
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
When studying the multilinear PageRank problem, a system of polynomial equations needs to be solved. In this paper, we propose a modified Newton method and develop a monotone convergence theory for a third-order tensor when alpha < 1/2. In this parameter regime, the sequence of vectors produced by the Newton-like method is monotonically increasing and converges to the solution. When alpha > 1/2 we present an always-stochastic modified Newton iteration. Numerical results illustrate the effectiveness of this method.
引用
收藏
页码:1161 / 1171
页数:11
相关论文
共 50 条
  • [1] A continuation method for computing the multilinear PageRank
    Bucci, Alberto
    Poloni, Federico
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2022, 29 (04)
  • [2] MULTILINEAR PAGERANK
    Gleich, David F.
    Lim, Lek-Heng
    Yu, Yongyang
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2015, 36 (04) : 1507 - 1541
  • [3] Vector Aitken extrapolation method for multilinear PageRank computations
    Boubekraoui, Maryam
    Bentbib, Abdeslem Hafid
    Jbilou, Khalide
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (01) : 1145 - 1172
  • [4] Vector Aitken extrapolation method for multilinear PageRank computations
    Maryam Boubekraoui
    Abdeslem Hafid Bentbib
    Khalide Jbilou
    Journal of Applied Mathematics and Computing, 2023, 69 : 1145 - 1172
  • [5] The MFPIO iteration and the FPMPE method for multilinear PageRank computations
    Zhou, Sheng-Wei
    Wen, Chun
    Shen, Zhao-Li
    Carpentieri, Bruno
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 454
  • [6] Extrapolation methods for multilinear PageRank
    Bentbib, Abdeslem Hafid
    Boubekraoui, Maryam
    Jbilou, Khalide
    NUMERICAL ALGORITHMS, 2025, 98 (02) : 1013 - 1043
  • [7] The uniqueness of multilinear PageRank vectors
    Li, Wen
    Liu, Dongdong
    Ng, Michael K.
    Vong, Seak-Weng
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2017, 24 (06)
  • [8] The general tensor regular splitting iterative method for multilinear PageRank problem
    Tang, Shuting
    Deng, Xiuqin
    Zhan, Rui
    AIMS MATHEMATICS, 2024, 9 (01): : 1443 - 1471
  • [9] The general tensor regular splitting iterative method for multilinear PageRank problem
    Tang, Shuting
    Deng, Xiuqin
    Zhan, Rui
    AIMS MATHEMATICS, 2023, 9 (01): : 1443 - 1471
  • [10] Extrapolated splitting methods for multilinear PageRank computations
    Boubekraoui, Maryam
    APPLIED NUMERICAL MATHEMATICS, 2025, 208 : 92 - 103