High-reflection optical thin films based on SiO2/TiO2 nanoparticles multilayers by dip coating

被引:10
作者
Wang Yuehui [1 ]
Yang Xing [2 ]
机构
[1] Univ Elect Sci & Technol China, Zhongshan Inst, Dept Mat & Food, Zhongshan 528402, Peoples R China
[2] Univ Elect Sci & Technol, Sch Elect Sci & Engn, Chengdu 610054, Sichuan, Peoples R China
基金
美国国家科学基金会;
关键词
atomic force microscopy; scanning electron microscopy; distributed Bragg reflectors; optical multilayers; dip coating; reflectivity; nanoparticles; refractive index; silicon compounds; titanium compounds; semiconductor materials; nanofabrication; semiconductor thin films; semiconductor growth; SiO2-TiO2; wavelength; 1600; 0; nm; 800; thickness uniformity; nanoparticles multilayers; quarter-wave layers; dip coating method; silicon wafer; high-reflection optical thin films; electromagnetic spectrum; peak reflectance region; ALN/GAN;
D O I
10.1049/mnl.2018.0045
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The alternately stacking layers of SiO2 and TiO2 nanoparticles with different refractive indices were fabricated to form the distributed Bragg reflectors on the silicon wafer by dip coating method. By appropriate design of the thickness of the quarter-wave layers, the peak reflectance region can be tuned from the blue-green to the infrared portion of the electromagnetic spectrum. The peak reflectance of 65% at 800 nm and at 1600 nm has been achieved using seven periods, respectively; meanwhile, compared with the simulation, 80% at 800 nm and 70% at 1620 nm for seven periods, respectively. The scanning electron microscopy and the atomic force microscope studies confirm the thickness uniformity achieved along the fabrication direction, and a good quality of surfaces and interfaces.
引用
收藏
页码:1349 / 1351
页数:3
相关论文
共 12 条
  • [1] Polymeric multilayers for integration into photonic devices
    Alvarez, AL
    Tito, J
    Vaello, MB
    Velásquez, P
    Mallavia, R
    Sánchez-López, MM
    de Avila, SF
    [J]. THIN SOLID FILMS, 2003, 433 (1-2) : 277 - 280
  • [2] Optical absorptions in ZnO/a-Si distributed Bragg reflectors
    Chen, Aqing
    Chen, Zhian
    Zhu, Kaigui
    Ji, Zhenguo
    [J]. JOURNAL OF NANOPARTICLE RESEARCH, 2017, 19 (01)
  • [3] Dielectric SiO2/ZrO2 distributed Bragg reflectors for ZnO microcavities prepared by the reactive helicon-wave-excited-plasma sputtering method
    Chichibu, SF
    Ohmori, T
    Shibata, N
    Koyama, T
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (16)
  • [4] Edrington AC, 2001, ADV MATER, V13, P421, DOI 10.1002/1521-4095(200103)13:6<421::AID-ADMA421>3.0.CO
  • [5] 2-#
  • [6] Gu1 X., 2014, JPN J APPL PHYS, V53
  • [7] Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN/GaN and Ta2O5/SiO2 distributed Bragg reflector -: art. no. 081105
    Kao, CC
    Peng, YC
    Yao, HH
    Tsai, JY
    Chang, YH
    Chu, JT
    Huang, HW
    Kao, TT
    Lu, TC
    Kuo, HC
    Wang, SC
    Lin, CF
    [J]. APPLIED PHYSICS LETTERS, 2005, 87 (08)
  • [8] Ultra-fast optical switches using ID polymeric photonic crystals
    Katouf, R
    Komikado, T
    Itoh, M
    Yatagai, T
    Umegaki, S
    [J]. PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2005, 3 (2-3) : 116 - 119
  • [9] Tamm-plasmon resonance based temperature sensor in a Ta2O5/SiO2 based distributed Bragg reflector
    Kumar, Samir
    Maji, Partha Sona
    Das, Ritwick
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2017, 260 : 10 - 15
  • [10] A 533-nm self-luminescent Si-rich SiNx/SiOx distributed Bragg reflector
    Lin, Yung-Hsiang
    Wu, Chung-Lun
    Pai, Yi-Hao
    Lin, Gong-Ru
    [J]. OPTICS EXPRESS, 2011, 19 (07): : 6563 - 6570