Riddling bifurcation in chaotic dynamical systems

被引:181
作者
Lai, YC
Grebogi, C
Yorke, JA
Venkataramani, SC
机构
[1] UNIV KANSAS,DEPT MATH,LAWRENCE,KS 66045
[2] UNIV MARYLAND,INST PLASMA RES,COLLEGE PK,MD 20742
[3] UNIV MARYLAND,INST PHYS SCI & TECHNOL,DEPT MATH,COLLEGE PK,MD 20742
关键词
D O I
10.1103/PhysRevLett.77.55
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
When a chaotic attractor lies in an invariant subspace, as in systems with symmetry, riddling can occur. Riddling refers to the situation where the basin of a chaotic attractor is riddled with holes that belong to the basin of another attractor. We establish properties of the riddling bifurcation that occurs when an unstable periodic orbit embedded in the chaotic attractor, usually of low period, becomes transversely unstable. An immediate physical consequence of the riddling bifurcation is that an extraordinarily low fraction of the trajectories in the invariant subspace diverge when there is a symmetry breaking.
引用
收藏
页码:55 / 58
页数:4
相关论文
共 16 条
[1]   RIDDLED BASINS [J].
Alexander, J. C. ;
Yorke, James A. ;
You, Zhiping ;
Kan, I. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04) :795-813
[2]   BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS [J].
ASHWIN, P ;
BUESCU, J ;
STEWART, I .
PHYSICS LETTERS A, 1994, 193 (02) :126-139
[3]   ARE ATTRACTORS RELEVANT TO TURBULENCE [J].
CRUTCHFIELD, JP ;
KANEKO, K .
PHYSICAL REVIEW LETTERS, 1988, 60 (26) :2715-2718
[4]  
GREBOGI C, 1985, ERGOD THEOR DYN SYST, V5, P341
[5]   FRACTAL BASIN BOUNDARIES, LONG-LIVED CHAOTIC TRANSIENTS, AND UNSTABLE-UNSTABLE PAIR BIFURCATION [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1983, 50 (13) :935-938
[6]   CRISES, SUDDEN CHANGES IN CHAOTIC ATTRACTORS, AND TRANSIENT CHAOS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICA D, 1983, 7 (1-3) :181-200
[7]   PERSISTENCE OF TRANSIENTS IN SPATIALLY STRUCTURED ECOLOGICAL MODELS [J].
HASTINGS, A ;
HIGGINS, K .
SCIENCE, 1994, 263 (5150) :1133-1136
[8]   EXPERIMENTAL AND NUMERICAL EVIDENCE FOR RIDDLED BASINS IN COUPLED CHAOTIC SYSTEMS [J].
HEAGY, JF ;
CARROLL, TL ;
PECORA, LM .
PHYSICAL REVIEW LETTERS, 1994, 73 (26) :3528-3531
[9]  
JACOBSON MV, 1981, COMMUN MATH PHYS, V81, P39