Existence of smooth solutions to a one-dimensional nonlinear degenerate variational wave equation

被引:4
作者
Hu, Yanbo [1 ]
Wang, Guodong [2 ]
机构
[1] Hangzhou Normal Univ, Dept Math, Hangzhou 310036, Zhejiang, Peoples R China
[2] Anhui Jianzhu Univ, Sch Math & Phys, Hefei 230601, Anhui, Peoples R China
基金
美国国家科学基金会;
关键词
Variational wave equation; Degenerate hyperbolic; Characteristic decomposition; Bootstrap; SEMI-HYPERBOLIC PATCHES; CONSERVATIVE SOLUTIONS; WEAK SOLUTIONS; GAS-DYNAMICS; ASYMPTOTIC EQUATION; LIQUID-CRYSTALS; GENERAL DATA; SONIC LINES; SYSTEM; SINGULARITIES;
D O I
10.1016/j.na.2017.09.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is focused on a one-dimensional nonlinear variational wave equation which is the Euler-Lagrange equations of a variational principle arising in the theory of nematic liquid crystals and a few other physical contexts. We establish the global existence of smooth solutions to its degenerate initial-boundary value problem under relaxed conditions on the initial-boundary data. Moreover, we show that the solution is uniformly C-1,C- (alpha) continuous up to the degenerate boundary and the degenerate curve is C-1,C- (alpha) continuous for alpha is an element of (0, 1/2). (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:80 / 101
页数:22
相关论文
共 41 条
[1]   Chemically induced twist-bend nematic liquid crystals, liquid crystal dimers, and negative elastic constants [J].
Adlem, K. ;
Copic, M. ;
Luckhurst, G. R. ;
Mertelj, A. ;
Parri, O. ;
Richardson, R. M. ;
Snow, B. D. ;
Timimi, B. A. ;
Tuffin, R. P. ;
Wilkes, D. .
PHYSICAL REVIEW E, 2013, 88 (02)
[2]   Diffractive nonlinear geometrical optics for variational wave equations and the Einstein equations [J].
Ali, Giuseppe ;
Hunter, John K. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (10) :1522-1557
[3]   ORIENTATION WAVES IN A DIRECTOR FIELD WITH ROTATIONAL INERTIA [J].
Ali, Giuseppe ;
Hunter, John K. .
KINETIC AND RELATED MODELS, 2009, 2 (01) :1-37
[4]  
[Anonymous], 1963, Acta Scient. Nat. Jilin Univ.
[5]  
Bressan A., 2017, ARCH RATION MECH ANA
[6]   Conservative solutions to a nonlinear variational wave equation [J].
Bressan, Alberto ;
Zheng, Yuxi .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 266 (02) :471-497
[7]  
Bressan A, 2016, COMMUN MATH SCI, V14, P31
[8]   Unique Conservative Solutions to a Variational Wave Equation [J].
Bressan, Alberto ;
Chen, Geng ;
Zhang, Qingtian .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 217 (03) :1069-1101
[9]   FINITE TIME SINGULARITIES FOR HYPERBOLIC SYSTEMS [J].
Chen, Geng ;
Huang, Tao ;
Liu, Chun .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (01) :758-785
[10]   Existence of a global smooth solution for a degenerate Goursat problem of gas dynamics [J].
Dai, ZH ;
Zhang, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 155 (04) :277-298