Triangle-free graphs with uniquely restricted maximum matchings and their corresponding greedoids

被引:13
作者
Levit, V. E. [1 ,2 ]
Mandrescu, Eugen [1 ]
机构
[1] Holon Inst Technol, Dept Comp Sci, IL-58102 Holon, Israel
[2] Coll Judeau & Samaria, Dept Comp Sci & Math, IL-44837 Ariel, Israel
关键词
triangle-free graph; Konig-Egevary graph; local maximum stable set; uniquely restricted maximum matching; greedoid;
D O I
10.1016/j.dam.2007.05.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A matching M is uniquely restricted in a graph G if its saturated vertices induce a subgraph which has a unique perfect matching, namely M itself [M.C. Golumbic, T. Hirst, M. Lewenstein, Uniquely restricted matchings, Algorithmica 31 (2001) 139-154]. G is a Konig-Egervary graph provided alpha(G) + mu(G) = vertical bar V(G)vertical bar [R.W. Deming, Independence numbers of graphs-an extension of the Konig-Egervary theorem, Discrete Math. 27 (1979) 23-33; F. Sterboul, A characterization of the graphs in which the transversal number equals the matching number, J. Combin. Theory Ser. B 27 (1979) 228-229], where mu(G) is the size of a maximum matching and alpha(G) is the cardinality of a maximum stable set. S is a local maximum stable set of G, and we write S epsilon Psi(G), if S is a maximum stable set of the subgraph spanned by S boolean OR N(S), where N(S) is the neighborhood of S. Nernhauser and Trotter [Vertex packings: structural properties and algorithms, Math. Programming 8 (1975) 232-248], proved that any S epsilon Psi(G) is a subset of a maximum stable set of G. In [V.E. Levit, E. Mandrescu, Local maximum stable sets in bipartite graphs with uniquely restricted maximum matchings, Discrete Appl. Math. 132 (2003) 163-174] we have proved that for a bipartite graph G, Psi(G) is a greedoid on its vertex set if and only if all its maximum matchings are uniquely restricted. In this paper we demonstrate that if G is a triangle-free graph, then Psi(G) is a greedoid if and only if all its maximum matchings are uniquely restricted and for any S epsilon psi(G), the subgraph spanned by S boolean OR N(S) is a Konig-Egervary graph. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2414 / 2425
页数:12
相关论文
共 28 条
[1]  
Bjorner A., 1992, ENCY MATH ITS APPL, P284
[2]   KONIG-EGERVARY GRAPHS, 2-BICRITICAL GRAPHS AND FRACTIONAL MATCHINGS [J].
BOURJOLLY, JM ;
PULLEYBLANK, WR .
DISCRETE APPLIED MATHEMATICS, 1989, 24 (1-3) :63-82
[3]  
Chaty G., 1979, UTILITAS MATHEMATICA, V16, P183
[4]   INDEPENDENCE NUMBERS OF GRAPHS - EXTENSION OF THE KOENIG-EGERVARY THEOREM [J].
DEMING, RW .
DISCRETE MATHEMATICS, 1979, 27 (01) :23-33
[5]  
Egervary E., 1931, Matematikai es Fizikai Lapok, V38, P16
[6]   Generalized subgraph-restricted matchings in graphs [J].
Goddard, W ;
Hedetniemi, SM ;
Hedetniemi, ST ;
Laskar, R .
DISCRETE MATHEMATICS, 2005, 293 (1-3) :129-138
[7]   Uniquely restricted matchings [J].
Golumbic, MC ;
Hirst, T ;
Lewenstein, M .
ALGORITHMICA, 2001, 31 (02) :139-154
[8]  
Hershkowitz D., 1993, LINEAR MULTILINEAR A, V34, P3
[9]   2-COMMODITY FLOW [J].
ITAI, A .
JOURNAL OF THE ACM, 1978, 25 (04) :596-611
[10]  
Konig D., 1931, Mat. Lapok, V38, P116